APC/C-Cdh1-dependent anaphase and telophase progression during mitotic slippage

<p>Abstract</p> <p>Background</p> <p>The spindle assembly checkpoint (SAC) inhibits anaphase progression in the presence of insufficient kinetochore-microtubule attachments, but cells can eventually override mitotic arrest by a process known as mitotic slippage or adapt...

Full description

Bibliographic Details
Main Authors: Toda Kazuhiro, Naito Kayoko, Mase Satoru, Ueno Masaru, Uritani Masahiro, Yamamoto Ayumu, Ushimaru Takashi
Format: Article
Language:English
Published: BMC 2012-02-01
Series:Cell Division
Subjects:
Online Access:http://www.celldiv.com/content/7/1/4
Description
Summary:<p>Abstract</p> <p>Background</p> <p>The spindle assembly checkpoint (SAC) inhibits anaphase progression in the presence of insufficient kinetochore-microtubule attachments, but cells can eventually override mitotic arrest by a process known as mitotic slippage or adaptation. This is a problem for cancer chemotherapy using microtubule poisons.</p> <p>Results</p> <p>Here we describe mitotic slippage in yeast <it>bub2Δ </it>mutant cells that are defective in the repression of precocious telophase onset (mitotic exit). Precocious activation of anaphase promoting complex/cyclosome (APC/C)-Cdh1 caused mitotic slippage in the presence of nocodazole, while the SAC was still active. APC/C-Cdh1, but not APC/C-Cdc20, triggered anaphase progression (securin degradation, separase-mediated cohesin cleavage, sister-chromatid separation and chromosome missegregation), in addition to telophase onset (mitotic exit), during mitotic slippage. This demonstrates that an inhibitory system not only of APC/C-Cdc20 but also of APC/C-Cdh1 is critical for accurate chromosome segregation in the presence of insufficient kinetochore-microtubule attachments.</p> <p>Conclusions</p> <p>The sequential activation of APC/C-Cdc20 to APC/C-Cdh1 during mitosis is central to accurate mitosis. Precocious activation of APC/C-Cdh1 in metaphase (pre-anaphase) causes mitotic slippage in SAC-activated cells. For the prevention of mitotic slippage, concomitant inhibition of APC/C-Cdh1 may be effective for tumor therapy with mitotic spindle poisons in humans.</p>
ISSN:1747-1028