Stability of Non-Ionic Surfactant Vesicles Loaded with Rifamycin S
These days, the eradication of bacterial infections is more difficult due to the mechanism of resistance that bacteria have developed towards traditional antibiotics. One of the medical strategies used against bacteria is the therapy with drug delivery systems. Non-ionic vesicles are nanomaterials w...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-11-01
|
Series: | Pharmaceutics |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4923/14/12/2626 |
_version_ | 1797455695239446528 |
---|---|
author | Verdiana Marchianò Maria Matos Ismael Marcet Maria Paz Cabal Gemma Gutiérrez Maria Carmen Blanco-López |
author_facet | Verdiana Marchianò Maria Matos Ismael Marcet Maria Paz Cabal Gemma Gutiérrez Maria Carmen Blanco-López |
author_sort | Verdiana Marchianò |
collection | DOAJ |
description | These days, the eradication of bacterial infections is more difficult due to the mechanism of resistance that bacteria have developed towards traditional antibiotics. One of the medical strategies used against bacteria is the therapy with drug delivery systems. Non-ionic vesicles are nanomaterials with good characteristics for encapsulating drugs, due to their bioavailability and biodegradability, which allow the drugs to reach the specific target and reduce their side effects. In this work, the antibiotic Rifamycin S was encapsulated. The rifamycin antibiotics family has been widely used against <i>Mycobacterium tuberculosis</i>, but recent studies have also shown that rifamycin S and rifampicin derivatives have bactericidal activity against <i>Staphylococcus epidermidis</i> and <i>Staphylococcus aureus</i>. In this work, a strain of <i>S. aureus</i> was selected to study the antimicrobial activity through Minimum Inhibitory Concentration (MIC) assay. Three formulations of niosomes were prepared using the thin film hydration method by varying the composition of the aqueous phase, which included MilliQ water, glycerol solution, or PEG400 solution. Niosomes with a rifamycin S concentration of 0.13 μg/g were satisfactorily prepared. Nanovesicles with larger size and higher encapsulation efficiency (EE) were obtained when using glycerol and PEG400 in the aqueous media. Our results showed that niosomes consisting of an aqueous glycerol solution have higher stability and EE across a diversity of temperatures and pHs, and a lower MIC of rifamycin S against <i>S. aureus</i>. |
first_indexed | 2024-03-09T15:58:01Z |
format | Article |
id | doaj.art-0b026444a8bb4e999e54607c8a8ed381 |
institution | Directory Open Access Journal |
issn | 1999-4923 |
language | English |
last_indexed | 2024-03-09T15:58:01Z |
publishDate | 2022-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Pharmaceutics |
spelling | doaj.art-0b026444a8bb4e999e54607c8a8ed3812023-11-24T17:19:13ZengMDPI AGPharmaceutics1999-49232022-11-011412262610.3390/pharmaceutics14122626Stability of Non-Ionic Surfactant Vesicles Loaded with Rifamycin SVerdiana Marchianò0Maria Matos1Ismael Marcet2Maria Paz Cabal3Gemma Gutiérrez4Maria Carmen Blanco-López5Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, SpainDepartment of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, SpainDepartment of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, SpainDepartment of Organic and Inorganic Chemistry, Instituto de Química Organometálica “Enrique Moles”, University of Oviedo, Julián Clavería 8, 33006 Oviedo, SpainDepartment of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, SpainDepartment of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, SpainThese days, the eradication of bacterial infections is more difficult due to the mechanism of resistance that bacteria have developed towards traditional antibiotics. One of the medical strategies used against bacteria is the therapy with drug delivery systems. Non-ionic vesicles are nanomaterials with good characteristics for encapsulating drugs, due to their bioavailability and biodegradability, which allow the drugs to reach the specific target and reduce their side effects. In this work, the antibiotic Rifamycin S was encapsulated. The rifamycin antibiotics family has been widely used against <i>Mycobacterium tuberculosis</i>, but recent studies have also shown that rifamycin S and rifampicin derivatives have bactericidal activity against <i>Staphylococcus epidermidis</i> and <i>Staphylococcus aureus</i>. In this work, a strain of <i>S. aureus</i> was selected to study the antimicrobial activity through Minimum Inhibitory Concentration (MIC) assay. Three formulations of niosomes were prepared using the thin film hydration method by varying the composition of the aqueous phase, which included MilliQ water, glycerol solution, or PEG400 solution. Niosomes with a rifamycin S concentration of 0.13 μg/g were satisfactorily prepared. Nanovesicles with larger size and higher encapsulation efficiency (EE) were obtained when using glycerol and PEG400 in the aqueous media. Our results showed that niosomes consisting of an aqueous glycerol solution have higher stability and EE across a diversity of temperatures and pHs, and a lower MIC of rifamycin S against <i>S. aureus</i>.https://www.mdpi.com/1999-4923/14/12/2626niosomessynthesis and characterizationdrug deliverystabilityantimicrobial activity |
spellingShingle | Verdiana Marchianò Maria Matos Ismael Marcet Maria Paz Cabal Gemma Gutiérrez Maria Carmen Blanco-López Stability of Non-Ionic Surfactant Vesicles Loaded with Rifamycin S Pharmaceutics niosomes synthesis and characterization drug delivery stability antimicrobial activity |
title | Stability of Non-Ionic Surfactant Vesicles Loaded with Rifamycin S |
title_full | Stability of Non-Ionic Surfactant Vesicles Loaded with Rifamycin S |
title_fullStr | Stability of Non-Ionic Surfactant Vesicles Loaded with Rifamycin S |
title_full_unstemmed | Stability of Non-Ionic Surfactant Vesicles Loaded with Rifamycin S |
title_short | Stability of Non-Ionic Surfactant Vesicles Loaded with Rifamycin S |
title_sort | stability of non ionic surfactant vesicles loaded with rifamycin s |
topic | niosomes synthesis and characterization drug delivery stability antimicrobial activity |
url | https://www.mdpi.com/1999-4923/14/12/2626 |
work_keys_str_mv | AT verdianamarchiano stabilityofnonionicsurfactantvesiclesloadedwithrifamycins AT mariamatos stabilityofnonionicsurfactantvesiclesloadedwithrifamycins AT ismaelmarcet stabilityofnonionicsurfactantvesiclesloadedwithrifamycins AT mariapazcabal stabilityofnonionicsurfactantvesiclesloadedwithrifamycins AT gemmagutierrez stabilityofnonionicsurfactantvesiclesloadedwithrifamycins AT mariacarmenblancolopez stabilityofnonionicsurfactantvesiclesloadedwithrifamycins |