Cracking and Photo-Oxidation of Polyoxymethylene Degraded in Terrestrial and Simulated Marine Environments

Marine plastic debris is an environmental problem, and its degradation into microplastics (1-5000 μm) introduces them into the food chain. In this study, small polyoxymethylene (global production ~3000 Tg per year) pellets were exposed in terrestrial and simulated marine environments to heat and lig...

Full description

Bibliographic Details
Main Authors: Chih-Cheng Tang, Ying-Ting Chen, Yi-Ming Zhang, Huey-Ing Chen, Peter Brimblecombe, Chon-Lin Lee
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-05-01
Series:Frontiers in Marine Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmars.2022.843295/full
Description
Summary:Marine plastic debris is an environmental problem, and its degradation into microplastics (1-5000 μm) introduces them into the food chain. In this study, small polyoxymethylene (global production ~3000 Tg per year) pellets were exposed in terrestrial and simulated marine environments to heat and light, resulting in cracking during decay with increasing IR absorption (OH-bonds). Furthermore, sunlight over three years reduced pellet mass and diameter (~10% and ~40%), initially yielding 100-300 μm fragments. Changes under UV irradiation were smaller as it could not penetrate into particle interiors. Characteristic spacing of surface striations (100-300 µm) initiated radial cracks to pellet interiors, and breakdown ultimately meant 95% of particles were <300 µm, which are potentially incorporated in marine turbidites.
ISSN:2296-7745