NEW SPECTRAL STATISTICS FOR ENSEMBLES OF 2 × 2 REAL SYMMETRIC RANDOM MATRICES

We investigate spacing statistics for ensembles of various real random matrices where the matrix-elements have various Probability Distribution Function (PDF: <em>f(x)</em>) including Gaussian. For two modifications of 2 × 2 matrices with various PDFs, we derive the spacing distributions...

Full description

Bibliographic Details
Main Authors: Sachin Kumar, Zafar Ahmed
Format: Article
Language:English
Published: CTU Central Library 2017-12-01
Series:Acta Polytechnica
Subjects:
Online Access:https://ojs.cvut.cz/ojs/index.php/ap/article/view/4481
_version_ 1818152280066621440
author Sachin Kumar
Zafar Ahmed
author_facet Sachin Kumar
Zafar Ahmed
author_sort Sachin Kumar
collection DOAJ
description We investigate spacing statistics for ensembles of various real random matrices where the matrix-elements have various Probability Distribution Function (PDF: <em>f(x)</em>) including Gaussian. For two modifications of 2 × 2 matrices with various PDFs, we derive the spacing distributions <em>p(s)</em> of adjacent energy eigenvalues. Nevertheless, they show the linear level repulsion near s = 0 as <em>αs</em> where <em>α</em> depends on the choice of the PDF. More interestingly when <em>f</em>(<em>x</em>) = <em>xe</em><sup>−x<sup>2</sup></sup> (<em>f</em>(0) = 0), we get cubic level repulsion near s = 0: <em>p(s)</em> ~ s<sup>3</sup>e<sup>−s<sup>2</sup></sup>.We also derive the distribution of eigenvalues <em>D</em>(ε) for these matrices.
first_indexed 2024-12-11T13:52:12Z
format Article
id doaj.art-0b25e4159d1746ffafcdd67e4fc1e8de
institution Directory Open Access Journal
issn 1210-2709
1805-2363
language English
last_indexed 2024-12-11T13:52:12Z
publishDate 2017-12-01
publisher CTU Central Library
record_format Article
series Acta Polytechnica
spelling doaj.art-0b25e4159d1746ffafcdd67e4fc1e8de2022-12-22T01:04:12ZengCTU Central LibraryActa Polytechnica1210-27091805-23632017-12-0157641842310.14311/AP.2017.57.04184037NEW SPECTRAL STATISTICS FOR ENSEMBLES OF 2 × 2 REAL SYMMETRIC RANDOM MATRICESSachin Kumar0Zafar Ahmed1Bhabha Atomic Research Centre, MumbaiNuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, IndiaWe investigate spacing statistics for ensembles of various real random matrices where the matrix-elements have various Probability Distribution Function (PDF: <em>f(x)</em>) including Gaussian. For two modifications of 2 × 2 matrices with various PDFs, we derive the spacing distributions <em>p(s)</em> of adjacent energy eigenvalues. Nevertheless, they show the linear level repulsion near s = 0 as <em>αs</em> where <em>α</em> depends on the choice of the PDF. More interestingly when <em>f</em>(<em>x</em>) = <em>xe</em><sup>−x<sup>2</sup></sup> (<em>f</em>(0) = 0), we get cubic level repulsion near s = 0: <em>p(s)</em> ~ s<sup>3</sup>e<sup>−s<sup>2</sup></sup>.We also derive the distribution of eigenvalues <em>D</em>(ε) for these matrices.https://ojs.cvut.cz/ojs/index.php/ap/article/view/4481real symmetric matricesWigner surmise
spellingShingle Sachin Kumar
Zafar Ahmed
NEW SPECTRAL STATISTICS FOR ENSEMBLES OF 2 × 2 REAL SYMMETRIC RANDOM MATRICES
Acta Polytechnica
real symmetric matrices
Wigner surmise
title NEW SPECTRAL STATISTICS FOR ENSEMBLES OF 2 × 2 REAL SYMMETRIC RANDOM MATRICES
title_full NEW SPECTRAL STATISTICS FOR ENSEMBLES OF 2 × 2 REAL SYMMETRIC RANDOM MATRICES
title_fullStr NEW SPECTRAL STATISTICS FOR ENSEMBLES OF 2 × 2 REAL SYMMETRIC RANDOM MATRICES
title_full_unstemmed NEW SPECTRAL STATISTICS FOR ENSEMBLES OF 2 × 2 REAL SYMMETRIC RANDOM MATRICES
title_short NEW SPECTRAL STATISTICS FOR ENSEMBLES OF 2 × 2 REAL SYMMETRIC RANDOM MATRICES
title_sort new spectral statistics for ensembles of 2 2 real symmetric random matrices
topic real symmetric matrices
Wigner surmise
url https://ojs.cvut.cz/ojs/index.php/ap/article/view/4481
work_keys_str_mv AT sachinkumar newspectralstatisticsforensemblesof22realsymmetricrandommatrices
AT zafarahmed newspectralstatisticsforensemblesof22realsymmetricrandommatrices