Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-Mills

Abstract We conjecture that every rational Yangian invariant in N $$ \mathcal{N} $$ = 4 SYM theory satisfies a recently introduced notion of cluster adjacency. We provide evidence for this conjecture by using the Sklyanin Poisson bracket on Gr(4, n) to check numerous examples.

Bibliographic Details
Main Authors: Jorge Mago, Anders Schreiber, Marcus Spradlin, Anastasia Volovich
Format: Article
Language:English
Published: SpringerOpen 2019-10-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP10(2019)099
_version_ 1818978865079386112
author Jorge Mago
Anders Schreiber
Marcus Spradlin
Anastasia Volovich
author_facet Jorge Mago
Anders Schreiber
Marcus Spradlin
Anastasia Volovich
author_sort Jorge Mago
collection DOAJ
description Abstract We conjecture that every rational Yangian invariant in N $$ \mathcal{N} $$ = 4 SYM theory satisfies a recently introduced notion of cluster adjacency. We provide evidence for this conjecture by using the Sklyanin Poisson bracket on Gr(4, n) to check numerous examples.
first_indexed 2024-12-20T16:50:25Z
format Article
id doaj.art-0b26e99021c74018af0ef595dce4764a
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-12-20T16:50:25Z
publishDate 2019-10-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-0b26e99021c74018af0ef595dce4764a2022-12-21T19:32:50ZengSpringerOpenJournal of High Energy Physics1029-84792019-10-0120191011310.1007/JHEP10(2019)099Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-MillsJorge Mago0Anders Schreiber1Marcus Spradlin2Anastasia Volovich3Department of Physics, Brown UniversityDepartment of Physics, Brown UniversityDepartment of Physics and Brown Theoretical Physics Center, Brown UniversityDepartment of Physics, Brown UniversityAbstract We conjecture that every rational Yangian invariant in N $$ \mathcal{N} $$ = 4 SYM theory satisfies a recently introduced notion of cluster adjacency. We provide evidence for this conjecture by using the Sklyanin Poisson bracket on Gr(4, n) to check numerous examples.http://link.springer.com/article/10.1007/JHEP10(2019)099Scattering AmplitudesSupersymmetric Gauge Theory
spellingShingle Jorge Mago
Anders Schreiber
Marcus Spradlin
Anastasia Volovich
Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-Mills
Journal of High Energy Physics
Scattering Amplitudes
Supersymmetric Gauge Theory
title Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-Mills
title_full Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-Mills
title_fullStr Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-Mills
title_full_unstemmed Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-Mills
title_short Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-Mills
title_sort yangian invariants and cluster adjacency in n mathcal n 4 yang mills
topic Scattering Amplitudes
Supersymmetric Gauge Theory
url http://link.springer.com/article/10.1007/JHEP10(2019)099
work_keys_str_mv AT jorgemago yangianinvariantsandclusteradjacencyinnmathcaln4yangmills
AT andersschreiber yangianinvariantsandclusteradjacencyinnmathcaln4yangmills
AT marcusspradlin yangianinvariantsandclusteradjacencyinnmathcaln4yangmills
AT anastasiavolovich yangianinvariantsandclusteradjacencyinnmathcaln4yangmills