Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-Mills
Abstract We conjecture that every rational Yangian invariant in N $$ \mathcal{N} $$ = 4 SYM theory satisfies a recently introduced notion of cluster adjacency. We provide evidence for this conjecture by using the Sklyanin Poisson bracket on Gr(4, n) to check numerous examples.
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-10-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP10(2019)099 |
_version_ | 1818978865079386112 |
---|---|
author | Jorge Mago Anders Schreiber Marcus Spradlin Anastasia Volovich |
author_facet | Jorge Mago Anders Schreiber Marcus Spradlin Anastasia Volovich |
author_sort | Jorge Mago |
collection | DOAJ |
description | Abstract We conjecture that every rational Yangian invariant in N $$ \mathcal{N} $$ = 4 SYM theory satisfies a recently introduced notion of cluster adjacency. We provide evidence for this conjecture by using the Sklyanin Poisson bracket on Gr(4, n) to check numerous examples. |
first_indexed | 2024-12-20T16:50:25Z |
format | Article |
id | doaj.art-0b26e99021c74018af0ef595dce4764a |
institution | Directory Open Access Journal |
issn | 1029-8479 |
language | English |
last_indexed | 2024-12-20T16:50:25Z |
publishDate | 2019-10-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of High Energy Physics |
spelling | doaj.art-0b26e99021c74018af0ef595dce4764a2022-12-21T19:32:50ZengSpringerOpenJournal of High Energy Physics1029-84792019-10-0120191011310.1007/JHEP10(2019)099Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-MillsJorge Mago0Anders Schreiber1Marcus Spradlin2Anastasia Volovich3Department of Physics, Brown UniversityDepartment of Physics, Brown UniversityDepartment of Physics and Brown Theoretical Physics Center, Brown UniversityDepartment of Physics, Brown UniversityAbstract We conjecture that every rational Yangian invariant in N $$ \mathcal{N} $$ = 4 SYM theory satisfies a recently introduced notion of cluster adjacency. We provide evidence for this conjecture by using the Sklyanin Poisson bracket on Gr(4, n) to check numerous examples.http://link.springer.com/article/10.1007/JHEP10(2019)099Scattering AmplitudesSupersymmetric Gauge Theory |
spellingShingle | Jorge Mago Anders Schreiber Marcus Spradlin Anastasia Volovich Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-Mills Journal of High Energy Physics Scattering Amplitudes Supersymmetric Gauge Theory |
title | Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-Mills |
title_full | Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-Mills |
title_fullStr | Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-Mills |
title_full_unstemmed | Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-Mills |
title_short | Yangian invariants and cluster adjacency in N $$ \mathcal{N} $$ = 4 Yang-Mills |
title_sort | yangian invariants and cluster adjacency in n mathcal n 4 yang mills |
topic | Scattering Amplitudes Supersymmetric Gauge Theory |
url | http://link.springer.com/article/10.1007/JHEP10(2019)099 |
work_keys_str_mv | AT jorgemago yangianinvariantsandclusteradjacencyinnmathcaln4yangmills AT andersschreiber yangianinvariantsandclusteradjacencyinnmathcaln4yangmills AT marcusspradlin yangianinvariantsandclusteradjacencyinnmathcaln4yangmills AT anastasiavolovich yangianinvariantsandclusteradjacencyinnmathcaln4yangmills |