Multi-Time Scale Coordinated Scheduling Strategy with Distributed Power Flow Controllers for Minimizing Wind Power Spillage

The inherent variability and randomness of large-scale wind power integration have brought great challenges to power flow control and dispatch. The distributed power flow controller (DPFC) has the higher flexibility and capacity in power flow control in the system with wind generation. This paper pr...

Full description

Bibliographic Details
Main Authors: Yi Tang, Yuqian Liu, Jia Ning, Jingbo Zhao
Format: Article
Language:English
Published: MDPI AG 2017-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/10/11/1804
Description
Summary:The inherent variability and randomness of large-scale wind power integration have brought great challenges to power flow control and dispatch. The distributed power flow controller (DPFC) has the higher flexibility and capacity in power flow control in the system with wind generation. This paper proposes a multi-time scale coordinated scheduling model with DPFC to minimize wind power spillage. Configuration of DPFCs is initially determined by stochastic method. Afterward, two sequential procedures containing day-head and real-time scales are applied for determining maximum schedulable wind sources, optimal outputs of generating units and operation setting of DPFCs. The generating plan is obtained initially in day-ahead scheduling stage and modified in real-time scheduling model, while considering the uncertainty of wind power and fast operation of DPFC. Numerical simulation results in IEEE-RTS79 system illustrate that wind power is maximum scheduled with the optimal deployment and operation of DPFC, which confirms the applicability and effectiveness of the proposed method.
ISSN:1996-1073