Electro-Absorbers: A Comparison on Their Performance with Jet-Absorbers and Absorption Columns

This work focuses on the removal of perchloroethylene (PCE) from gaseous streams using absorbers connected with electrolyzers. Two types of absorption devices (jet absorber and absorption column) were compared. In addition, it has been evaluated the different by-products generated when a simultaneou...

Full description

Bibliographic Details
Main Authors: Monserrat Castañeda-Juárez, Martín Muñoz-Morales, Fernanda Lourdes Souza, Cristina Sáez, Pablo Cañizares, Perla Tatiana Almazán-Sánchez, Ivonne Linares-Hernández, Manuel Andrés Rodrigo
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/10/6/653
Description
Summary:This work focuses on the removal of perchloroethylene (PCE) from gaseous streams using absorbers connected with electrolyzers. Two types of absorption devices (jet absorber and absorption column) were compared. In addition, it has been evaluated the different by-products generated when a simultaneous electrolysis with diamond anodes is carried out. PCE was not mineralized, but it was transformed into phosgene that mainly derivates into carbon tetrachloride. Trichloroacetic acid was also formed, but in much lower amounts. Results showed a more efficient absorption of PCE in the packed column, which it is associated to the higher gas–liquid contact surface. Jet absorber seems to favor the production of carbon tetrachloride in gaseous phase, whereas the packed column promotes a higher concentration of trichloroacetic acid in liquid. It was also evaluated the scale up of the electrolytic stage of these electro-absorption devices by using a stack with five perforated electrode packages instead of a single cell. Clarification of the effect of the applied current density on the speciation attained after the electrolysis of the absorbent has been attempted. Experiments reveal similar results in terms of PCE removal and a reduced generation of gaseous intermediates at lower current densities.
ISSN:2073-4344