Synthesizing Spectra from 3D Radiation Hydrodynamic Models of Massive Stars Using Monte Carlo Radiation Transport

Observations indicate that turbulent motions are present on most massive star surfaces. Starting from the observed phenomena of spectral lines with widths that are much larger than their thermal broadening (e.g., micro- and macroturbulence), and considering the detection of stochastic low-frequency...

Full description

Bibliographic Details
Main Authors: William C. Schultz, Benny T.-H. Tsang, Lars Bildsten, Yan-Fei Jiang
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/acb701
Description
Summary:Observations indicate that turbulent motions are present on most massive star surfaces. Starting from the observed phenomena of spectral lines with widths that are much larger than their thermal broadening (e.g., micro- and macroturbulence), and considering the detection of stochastic low-frequency variability (SLFV) in the Transiting Exoplanet Survey Satellite photometry, these stars clearly have large-scale turbulent motions on their surfaces. The cause of this turbulence is debated, with near-surface convection zones, core internal gravity waves, and wind variability being proposed. Our 3D gray radiation hydrodynamic (RHD) models previously characterized the convective dynamics of the surfaces, driven by near-surface convection zones, and provided reasonable matches to the observed SLFV of the most luminous massive stars. We now explore the complex emitting surfaces of these 3D RHD models, which strongly violate the 1D assumption of a plane-parallel atmosphere. By post-processing the gray RHD models with the Monte Carlo radiation transport code Sedona , we synthesize stellar spectra and extract information from the broadening of individual photospheric lines. The use of Sedona enables the calculation of the viewing angle and temporal dependence of spectral absorption line profiles. By combining uncorrelated temporal snapshots together, we compare the turbulent broadening from the 3D RHD models to the thermal broadening of the extended emitting region, showing that our synthesized spectral lines closely resemble the observed macroturbulent broadening from similarly luminous stars. More generally, the new techniques that we have developed will allow for systematic studies of the origins of turbulent velocity broadening from any future 3D simulations.
ISSN:1538-4357