Preliminary results of ion trajectory tracking in the acceleration region of the VINCY cyclotron
In an accelerating region of a cyclotron, an ion makes a large number of turns; thus, its n the Runge-Kutta method of the fourth order with the adaptive time step has been developed. The accuracy requirement is simultaneously set on position and momentum calculation. Magnetic fields used as inputs,...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
VINCA Institute of Nuclear Sciences
2006-01-01
|
Series: | Nuclear Technology and Radiation Protection |
Subjects: | |
Online Access: | http://www.doiserbia.nb.rs/img/doi/1451-3994/2006/1451-39940601029I.pdf |
Summary: | In an accelerating region of a cyclotron, an ion makes a large number of turns; thus, its n the Runge-Kutta method of the fourth order with the adaptive time step has been developed. The accuracy requirement is simultaneously set on position and momentum calculation. Magnetic fields used as inputs, have been evaluated in terms of the radial fluctuations of the orbital frequency, i.e. their isochronisms. Ion trajectory tracking has been performed for the following four test beams: H-, H+3, 4He+, He+, and 40Ar6+. |
---|---|
ISSN: | 1451-3994 |