A Lyapunov-Optimized Dynamic Task Offloading Strategy for Satellite Edge Computing

Satellite edge computing (SEC) has garnered significant attention for its potential to deliver services directly to users. However, the uneven distribution of receiving tasks among satellites in the constellation can lead to uneven utilization of computing resources. This paper proposes a task offlo...

Full description

Bibliographic Details
Main Authors: Yifei Hu, Wenbin Gong, Fangming Zhou
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/7/4281
Description
Summary:Satellite edge computing (SEC) has garnered significant attention for its potential to deliver services directly to users. However, the uneven distribution of receiving tasks among satellites in the constellation can lead to uneven utilization of computing resources. This paper proposes a task offloading strategy for SEC that aims to minimize the average delay and energy consumption of tasks by assigning them to appropriate satellite nodes. The approach uses Lyapunov optimization to convert the long-term optimization problem with task queue length constraints into an assignment problem within a single time slot and solve it based on the Hungarian algorithm. Experimental simulations have shown that the proposed algorithm performs better than other baseline algorithms.
ISSN:2076-3417