Voltage and Deflection Amplification via Double Resonance Excitation in a Cantilever Microstructure

Cantilever electrostatically-actuated resonators show great promise in sensing and actuating applications. However, the electrostatic actuation suffers from high-voltage actuation requirements and high noise low-amplitude signal-outputs which limit its applications. Here, we introduce a mixed-freque...

Full description

Bibliographic Details
Main Authors: Mohammad H. Hasan, Fadi Alsaleem, Abdallah Ramini
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/19/2/380
Description
Summary:Cantilever electrostatically-actuated resonators show great promise in sensing and actuating applications. However, the electrostatic actuation suffers from high-voltage actuation requirements and high noise low-amplitude signal-outputs which limit its applications. Here, we introduce a mixed-frequency signal for a cantilever-based resonator that triggers its mechanical and electrical resonances simultaneously, to overcome these limitations. A single linear RLC circuit cannot completely capture the response of the resonator under double resonance excitation. Therefore, we develop a coupled mechanical and electrical mathematical linearized model at different operation frequencies and validate this model experimentally. The double-resonance excitation results in a 21 times amplification of the voltage across the resonator and 31 times amplitude amplification over classical excitation schemes. This intensive experimental study showed a great potential of double resonance excitation providing a high amplitude amplification and maintaining the linearity of the system when the parasitic capacitance is maintained low.
ISSN:1424-8220