High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010–2021

<p>Reservoirs and dams are essential infrastructure in water management; thus, information of their surface water area (SWA), water surface elevation (WSE), and reservoir water storage change (RWSC) is crucial for understanding their properties and interactions in hydrological and biogeochemic...

Full description

Bibliographic Details
Main Authors: Y. Shen, D. Liu, L. Jiang, K. Nielsen, J. Yin, J. Liu, P. Bauer-Gottwein
Format: Article
Language:English
Published: Copernicus Publications 2022-12-01
Series:Earth System Science Data
Online Access:https://essd.copernicus.org/articles/14/5671/2022/essd-14-5671-2022.pdf
Description
Summary:<p>Reservoirs and dams are essential infrastructure in water management; thus, information of their surface water area (SWA), water surface elevation (WSE), and reservoir water storage change (RWSC) is crucial for understanding their properties and interactions in hydrological and biogeochemical cycles. However, knowledge of these reservoir characteristics is scarce or inconsistent at the national scale. Here, we introduce comprehensive reservoir datasets of 338 reservoirs in China, with a total of 470.6 km<span class="inline-formula"><sup>3</sup></span> storage capacity (50 % Chinese reservoir storage capacity). Given the scarcity of publicly available gauged observations and operational applications of satellites for hydrological cycles, we utilize multiple satellite altimetry missions (SARAL/AltiKa, Sentinel-3A and Sentinel-3B, CroySat-2, Jason-3, and ICESat-2) and imagery data from Landsat and Sentinel-2 to produce a comprehensive reservoir dataset on the WSE, SWA, and RWSC during 2010–2021. Validation against gauged measurements of 93 reservoirs demonstrates the relatively high accuracy and reliability of our remotely sensed datasets. (1) Across gauge comparisons of RWSC, the median statistics of the Pearson correlation coefficient (CC), normalized root mean square error (NRMSE), and root mean square error (RMSE) are 0.89, 11 %, and 0.021 km<span class="inline-formula"><sup>3</sup></span>, with a total of 91 % validated reservoirs (83 of 91) having good RMSE from 0.002 to 0.31 km<span class="inline-formula"><sup>3</sup></span> and NRMSE values smaller than 20 %. (2) Comparisons of WSE retracked by six satellite altimeters and gauges show good agreement. Specifically, the percentages of reservoirs having good and moderate RMSE values smaller than 1.0 m for CryoSat-2 (validated in 30 reservoirs), SARAL/AltiKa (9), Sentinel-3A (34), Sentinel-3B (25), Jason-3 (11), and ICESat-2 (26) are 77 %, 75 %, 79 %, 87 %, 81 %, and 82 %, respectively. By taking advantages of six satellite altimeters, we are able to densify WSE observations across spatiotemporal scales. Statistically, around 96 % of validated reservoirs (71 of 74) have RMSE values below 1.0 m, while 57 % of reservoirs (42 of 74) have good data quality with RMSE values below 0.6 m. Overall, our study fills such a data gap with regard to comprehensive reservoir information in China and provides strong support for many aspects such as hydrological processes, water resources, and other studies. The dataset is publicly available on Zenodo at <span class="uri">https://doi.org/10.5281/zenodo.7251283</span> (Shen et al., 2021).</p>
ISSN:1866-3508
1866-3516