Aggregated Network Traffic Modeling based on Superstatistical Approach with Account of Long-Term Dependence and Non-Stationary Dynamics Effects
A superstatistical approach that takes into account the long-term correlation and the non-stationary dynamics is proposed fo r modelling aggregated traffic with non-stationary dynamics. By means of queuing system simulation, it is shown that traditional approximation based on Kingman's formu...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Saint Petersburg Electrotechnical University "LETI"
2017-10-01
|
Series: | Известия высших учебных заведений России: Радиоэлектроника |
Subjects: | |
Online Access: | https://re.eltech.ru/jour/article/view/194 |
_version_ | 1797874517097316352 |
---|---|
author | Viet Nguyen Duc O. A. Markelov M. I. Bogachev |
author_facet | Viet Nguyen Duc O. A. Markelov M. I. Bogachev |
author_sort | Viet Nguyen Duc |
collection | DOAJ |
description | A superstatistical approach that takes into account the long-term correlation and the non-stationary dynamics is proposed fo r modelling aggregated traffic with non-stationary dynamics. By means of queuing system simulation, it is shown that traditional approximation based on Kingman's formula underestimates the average sojourn time by up to two decades at high utilization. On the contrary, the use of alternative superstatistical model taking into account the longterm correlation, this underestimation can be reduced by more than one decade. |
first_indexed | 2024-04-10T01:33:20Z |
format | Article |
id | doaj.art-0b6680aef11844e19a7d9d435c539504 |
institution | Directory Open Access Journal |
issn | 1993-8985 2658-4794 |
language | Russian |
last_indexed | 2024-04-10T01:33:20Z |
publishDate | 2017-10-01 |
publisher | Saint Petersburg Electrotechnical University "LETI" |
record_format | Article |
series | Известия высших учебных заведений России: Радиоэлектроника |
spelling | doaj.art-0b6680aef11844e19a7d9d435c5395042023-03-13T09:20:22ZrusSaint Petersburg Electrotechnical University "LETI"Известия высших учебных заведений России: Радиоэлектроника1993-89852658-47942017-10-01054753193Aggregated Network Traffic Modeling based on Superstatistical Approach with Account of Long-Term Dependence and Non-Stationary Dynamics EffectsViet Nguyen Duc0O. A. Markelov1M. I. Bogachev2Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В. И. Ульянова (Ленина)Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В. И. Ульянова (Ленина)Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В. И. Ульянова (Ленина)A superstatistical approach that takes into account the long-term correlation and the non-stationary dynamics is proposed fo r modelling aggregated traffic with non-stationary dynamics. By means of queuing system simulation, it is shown that traditional approximation based on Kingman's formula underestimates the average sojourn time by up to two decades at high utilization. On the contrary, the use of alternative superstatistical model taking into account the longterm correlation, this underestimation can be reduced by more than one decade.https://re.eltech.ru/jour/article/view/194сетевой трафикдолговременная зависимостьпроизводительность смосуперстатистики |
spellingShingle | Viet Nguyen Duc O. A. Markelov M. I. Bogachev Aggregated Network Traffic Modeling based on Superstatistical Approach with Account of Long-Term Dependence and Non-Stationary Dynamics Effects Известия высших учебных заведений России: Радиоэлектроника сетевой трафик долговременная зависимость производительность смо суперстатистики |
title | Aggregated Network Traffic Modeling based on Superstatistical Approach with Account of Long-Term Dependence and Non-Stationary Dynamics Effects |
title_full | Aggregated Network Traffic Modeling based on Superstatistical Approach with Account of Long-Term Dependence and Non-Stationary Dynamics Effects |
title_fullStr | Aggregated Network Traffic Modeling based on Superstatistical Approach with Account of Long-Term Dependence and Non-Stationary Dynamics Effects |
title_full_unstemmed | Aggregated Network Traffic Modeling based on Superstatistical Approach with Account of Long-Term Dependence and Non-Stationary Dynamics Effects |
title_short | Aggregated Network Traffic Modeling based on Superstatistical Approach with Account of Long-Term Dependence and Non-Stationary Dynamics Effects |
title_sort | aggregated network traffic modeling based on superstatistical approach with account of long term dependence and non stationary dynamics effects |
topic | сетевой трафик долговременная зависимость производительность смо суперстатистики |
url | https://re.eltech.ru/jour/article/view/194 |
work_keys_str_mv | AT vietnguyenduc aggregatednetworktrafficmodelingbasedonsuperstatisticalapproachwithaccountoflongtermdependenceandnonstationarydynamicseffects AT oamarkelov aggregatednetworktrafficmodelingbasedonsuperstatisticalapproachwithaccountoflongtermdependenceandnonstationarydynamicseffects AT mibogachev aggregatednetworktrafficmodelingbasedonsuperstatisticalapproachwithaccountoflongtermdependenceandnonstationarydynamicseffects |