Exact Mechanical Hierarchy of Non-Linear Fractional-Order Hereditariness
Non-local time evolution of material stress/strain is often referred to as material hereditariness. In this paper, the widely used non-linear approach to single integral time non-local mechanics named quasi-linear approach is proposed in the context of fractional differential calculus. The non-linea...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/4/673 |
Summary: | Non-local time evolution of material stress/strain is often referred to as material hereditariness. In this paper, the widely used non-linear approach to single integral time non-local mechanics named quasi-linear approach is proposed in the context of fractional differential calculus. The non-linear model of the springpot is defined in terms of a single integral with separable kernel endowed with a non-linear transform of the state variable that allows for the use of Boltzmann superposition. The model represents a self-similar hierarchy that allows for a time-invariance as the result of the application of the conservation laws at any resolution scale. It is shown that the non-linear springpot possess an equivalent mechanical hierarchy in terms of a functionally-graded elastic column resting on viscous dashpots with power-law decay of the material properties. Some numerical applications are reported to show the capabilities of the proposed model. |
---|---|
ISSN: | 2073-8994 |