Summary: | Colored titanium oxides are usually unstable in the atmosphere. Herein, a gray rutile titanium dioxide is synthesized by two-step calcination successively in a high-temperature reduction atmosphere and in a lower-temperature air atmosphere. The as-synthesized gray rutile TiO<sub>2</sub> exhibits higher photocatalytic activity than that of white rutile TiO<sub>2</sub> and shows high chemical stability. This is attributed to interior oxygen vacancies, which can improve the separation and transmission efficiency of the photogenerated carriers. Most notably, a formed surface passivation layer will protect the interior oxygen vacancies and provide long-term photocatalytic activity.
|