Summary: | With the continuous development of human society, earthquakes are becoming more and more dangerous to the production and life of human society. Researchers continue to try to predict earthquakes, but the results are still not significant. With the development of data science, sensing and communication technologies, there are increasing efforts to use machine learning methods to predict earthquakes. Our work raises a method that applies big data analysis and machine learning algorithms to earthquakes prediction. All data are accumulated by the Acoustic and Electromagnetic Testing All in One System (AETA). We propose the multi-station Principal Component Analysis (PCA) algorithm and extract features based on this method. At last, we propose a weekly-scale earthquake prediction model, which has a 60% accuracy using LightGBM (LGB).
|