Lithium-Ion Battery Prognostics through Reinforcement Learning Based on Entropy Measures

Lithium-ion is a progressive battery technology that has been used in vastly different electrical systems. Failure of the battery can lead to failure in the entire system where the battery is embedded and cause irreversible damage. To avoid probable damages, research is actively conducted, and data-...

Full description

Bibliographic Details
Main Authors: Alireza Namdari, Maryam Asad Samani, Tariq S. Durrani
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/15/11/393
Description
Summary:Lithium-ion is a progressive battery technology that has been used in vastly different electrical systems. Failure of the battery can lead to failure in the entire system where the battery is embedded and cause irreversible damage. To avoid probable damages, research is actively conducted, and data-driven methods are proposed, based on prognostics and health management (PHM) systems. PHM can use multiple time-scale data and stored information from battery capacities over several cycles to determine the battery state of health (SOH) and its remaining useful life (RUL). This results in battery safety, stability, reliability, and longer lifetime. In this paper, we propose different data-driven approaches to battery prognostics that rely on: Long Short-Term Memory (LSTM), Autoregressive Integrated Moving Average (ARIMA), and Reinforcement Learning (RL) based on the permutation entropy of battery voltage sequences at each cycle, since they take into account vital information from past data and result in high accuracy.
ISSN:1999-4893