On the L ∞ formulation of Chern-Simons theories

Abstract L ∞ algebras have been largely studied as algebraic frameworks in the formulation of gauge theories in which the gauge symmetries and the dynamics of the interacting theories are contained in a set of products acting on a graded vector space. On the other hand, FDAs are differential algebra...

Full description

Bibliographic Details
Main Author: S. Salgado
Format: Article
Language:English
Published: SpringerOpen 2022-04-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP04(2022)142
Description
Summary:Abstract L ∞ algebras have been largely studied as algebraic frameworks in the formulation of gauge theories in which the gauge symmetries and the dynamics of the interacting theories are contained in a set of products acting on a graded vector space. On the other hand, FDAs are differential algebras that generalize Lie algebras by including higher-degree differential forms in their differential equations. In this article, we review the dual relation between FDAs and L ∞ algebras. We study the formulation of standard Chern-Simons theories in terms of L ∞ algebras and extend the results to FDA-based gauge theories. We focus on two cases, namely a flat (or zero-curvature) theory and a generalized Chern-Simons theory, both including high-degree differential forms as fundamental fields.
ISSN:1029-8479