Approximation of CDF of Non-Central Chi-Square Distribution by Mean-Value Theorems for Integrals

The cumulative distribution function of the non-central chi-square distribution <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>χ</mi><mi>n</mi><mrow><mo>′</mo><mn>2</mn></mrow>&l...

Full description

Bibliographic Details
Main Authors: Árpád Baricz, Dragana Jankov Maširević, Tibor K. Pogány
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/2/129
_version_ 1797414150418202624
author Árpád Baricz
Dragana Jankov Maširević
Tibor K. Pogány
author_facet Árpád Baricz
Dragana Jankov Maširević
Tibor K. Pogány
author_sort Árpád Baricz
collection DOAJ
description The cumulative distribution function of the non-central chi-square distribution <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>χ</mi><mi>n</mi><mrow><mo>′</mo><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of <i>n</i> degrees of freedom possesses an integral representation. Here we rewrite this integral in terms of a lower incomplete gamma function applying two of the second mean-value theorems for definite integrals, which are of Bonnet type and Okamura’s variant of the du Bois–Reymond theorem. Related results are exposed concerning the small argument cases in cumulative distribution function (CDF) and their asymptotic behavior near the origin.
first_indexed 2024-03-09T05:28:57Z
format Article
id doaj.art-0bff98fafc3d4faca7ff1c56bf11a375
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T05:28:57Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-0bff98fafc3d4faca7ff1c56bf11a3752023-12-03T12:34:19ZengMDPI AGMathematics2227-73902021-01-019212910.3390/math9020129Approximation of CDF of Non-Central Chi-Square Distribution by Mean-Value Theorems for IntegralsÁrpád Baricz0Dragana Jankov Maširević1Tibor K. Pogány2Department of Economics, Babeş-Bolyai University, 400591 Cluj-Napoca, RomaniaDepartment of Mathematics, University of Osijek, Trg Lj. Gaja 6, 31000 Osijek, CroatiaInstitute of Applied Mathematics, Óbuda University, Bécsi út 96/b, 1034 Budapest, HungaryThe cumulative distribution function of the non-central chi-square distribution <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>χ</mi><mi>n</mi><mrow><mo>′</mo><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of <i>n</i> degrees of freedom possesses an integral representation. Here we rewrite this integral in terms of a lower incomplete gamma function applying two of the second mean-value theorems for definite integrals, which are of Bonnet type and Okamura’s variant of the du Bois–Reymond theorem. Related results are exposed concerning the small argument cases in cumulative distribution function (CDF) and their asymptotic behavior near the origin.https://www.mdpi.com/2227-7390/9/2/129non-central <i>χ</i>2 distributionsecond mean-value theorem for definite integralsmodified Bessel function of the first kindMarcum <i>Q</i>–functionlower incomplete gamma function
spellingShingle Árpád Baricz
Dragana Jankov Maširević
Tibor K. Pogány
Approximation of CDF of Non-Central Chi-Square Distribution by Mean-Value Theorems for Integrals
Mathematics
non-central <i>χ</i>2 distribution
second mean-value theorem for definite integrals
modified Bessel function of the first kind
Marcum <i>Q</i>–function
lower incomplete gamma function
title Approximation of CDF of Non-Central Chi-Square Distribution by Mean-Value Theorems for Integrals
title_full Approximation of CDF of Non-Central Chi-Square Distribution by Mean-Value Theorems for Integrals
title_fullStr Approximation of CDF of Non-Central Chi-Square Distribution by Mean-Value Theorems for Integrals
title_full_unstemmed Approximation of CDF of Non-Central Chi-Square Distribution by Mean-Value Theorems for Integrals
title_short Approximation of CDF of Non-Central Chi-Square Distribution by Mean-Value Theorems for Integrals
title_sort approximation of cdf of non central chi square distribution by mean value theorems for integrals
topic non-central <i>χ</i>2 distribution
second mean-value theorem for definite integrals
modified Bessel function of the first kind
Marcum <i>Q</i>–function
lower incomplete gamma function
url https://www.mdpi.com/2227-7390/9/2/129
work_keys_str_mv AT arpadbaricz approximationofcdfofnoncentralchisquaredistributionbymeanvaluetheoremsforintegrals
AT draganajankovmasirevic approximationofcdfofnoncentralchisquaredistributionbymeanvaluetheoremsforintegrals
AT tiborkpogany approximationofcdfofnoncentralchisquaredistributionbymeanvaluetheoremsforintegrals