Change Detection from Remote Sensing to Guide OpenStreetMap Labeling

The growing amount of openly available, meter-scale geospatial vertical aerial imagery and the need of the OpenStreetMap (OSM) project for continuous updates bring the opportunity to use the former to help with the latter, e.g., by leveraging the latest remote sensing data in combination with state-...

Full description

Bibliographic Details
Main Authors: Conrad M. Albrecht, Rui Zhang, Xiaodong Cui, Marcus Freitag, Hendrik F. Hamann, Levente J. Klein, Ulrich Finkler, Fernando Marianno, Johannes Schmude, Norman Bobroff, Wei Zhang, Carlo Siebenschuh, Siyuan Lu
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:ISPRS International Journal of Geo-Information
Subjects:
Online Access:https://www.mdpi.com/2220-9964/9/7/427
_version_ 1797563404803637248
author Conrad M. Albrecht
Rui Zhang
Xiaodong Cui
Marcus Freitag
Hendrik F. Hamann
Levente J. Klein
Ulrich Finkler
Fernando Marianno
Johannes Schmude
Norman Bobroff
Wei Zhang
Carlo Siebenschuh
Siyuan Lu
author_facet Conrad M. Albrecht
Rui Zhang
Xiaodong Cui
Marcus Freitag
Hendrik F. Hamann
Levente J. Klein
Ulrich Finkler
Fernando Marianno
Johannes Schmude
Norman Bobroff
Wei Zhang
Carlo Siebenschuh
Siyuan Lu
author_sort Conrad M. Albrecht
collection DOAJ
description The growing amount of openly available, meter-scale geospatial vertical aerial imagery and the need of the OpenStreetMap (OSM) project for continuous updates bring the opportunity to use the former to help with the latter, e.g., by leveraging the latest remote sensing data in combination with state-of-the-art computer vision methods to assist the OSM community in labeling work. This article reports our progress to utilize artificial neural networks (ANN) for change detection of OSM data to update the map. Furthermore, we aim at identifying geospatial regions where mappers need to focus on completing the global OSM dataset. Our approach is technically backed by the big geospatial data platform Physical Analytics Integrated Repository and Services (PAIRS). We employ supervised training of deep ANNs from vertical aerial imagery to segment scenes based on OSM map tiles to evaluate the technique quantitatively and qualitatively.
first_indexed 2024-03-10T18:43:12Z
format Article
id doaj.art-0c0169512d7344fda291e7659d600141
institution Directory Open Access Journal
issn 2220-9964
language English
last_indexed 2024-03-10T18:43:12Z
publishDate 2020-07-01
publisher MDPI AG
record_format Article
series ISPRS International Journal of Geo-Information
spelling doaj.art-0c0169512d7344fda291e7659d6001412023-11-20T05:39:50ZengMDPI AGISPRS International Journal of Geo-Information2220-99642020-07-019742710.3390/ijgi9070427Change Detection from Remote Sensing to Guide OpenStreetMap LabelingConrad M. Albrecht0Rui Zhang1Xiaodong Cui2Marcus Freitag3Hendrik F. Hamann4Levente J. Klein5Ulrich Finkler6Fernando Marianno7Johannes Schmude8Norman Bobroff9Wei Zhang10Carlo Siebenschuh11Siyuan Lu12IBM TJ Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USAIBM TJ Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USAIBM TJ Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USAIBM TJ Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USAIBM TJ Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USAIBM TJ Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USAIBM TJ Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USAIBM TJ Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USAIBM TJ Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USAIBM TJ Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USAIBM TJ Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USAIBM TJ Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USAIBM TJ Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USAThe growing amount of openly available, meter-scale geospatial vertical aerial imagery and the need of the OpenStreetMap (OSM) project for continuous updates bring the opportunity to use the former to help with the latter, e.g., by leveraging the latest remote sensing data in combination with state-of-the-art computer vision methods to assist the OSM community in labeling work. This article reports our progress to utilize artificial neural networks (ANN) for change detection of OSM data to update the map. Furthermore, we aim at identifying geospatial regions where mappers need to focus on completing the global OSM dataset. Our approach is technically backed by the big geospatial data platform Physical Analytics Integrated Repository and Services (PAIRS). We employ supervised training of deep ANNs from vertical aerial imagery to segment scenes based on OSM map tiles to evaluate the technique quantitatively and qualitatively.https://www.mdpi.com/2220-9964/9/7/427OpenStreetMap data collectionremote sensinggeospatial change detectionimage segmentationartificial neural networksbig geospatial databases
spellingShingle Conrad M. Albrecht
Rui Zhang
Xiaodong Cui
Marcus Freitag
Hendrik F. Hamann
Levente J. Klein
Ulrich Finkler
Fernando Marianno
Johannes Schmude
Norman Bobroff
Wei Zhang
Carlo Siebenschuh
Siyuan Lu
Change Detection from Remote Sensing to Guide OpenStreetMap Labeling
ISPRS International Journal of Geo-Information
OpenStreetMap data collection
remote sensing
geospatial change detection
image segmentation
artificial neural networks
big geospatial databases
title Change Detection from Remote Sensing to Guide OpenStreetMap Labeling
title_full Change Detection from Remote Sensing to Guide OpenStreetMap Labeling
title_fullStr Change Detection from Remote Sensing to Guide OpenStreetMap Labeling
title_full_unstemmed Change Detection from Remote Sensing to Guide OpenStreetMap Labeling
title_short Change Detection from Remote Sensing to Guide OpenStreetMap Labeling
title_sort change detection from remote sensing to guide openstreetmap labeling
topic OpenStreetMap data collection
remote sensing
geospatial change detection
image segmentation
artificial neural networks
big geospatial databases
url https://www.mdpi.com/2220-9964/9/7/427
work_keys_str_mv AT conradmalbrecht changedetectionfromremotesensingtoguideopenstreetmaplabeling
AT ruizhang changedetectionfromremotesensingtoguideopenstreetmaplabeling
AT xiaodongcui changedetectionfromremotesensingtoguideopenstreetmaplabeling
AT marcusfreitag changedetectionfromremotesensingtoguideopenstreetmaplabeling
AT hendrikfhamann changedetectionfromremotesensingtoguideopenstreetmaplabeling
AT leventejklein changedetectionfromremotesensingtoguideopenstreetmaplabeling
AT ulrichfinkler changedetectionfromremotesensingtoguideopenstreetmaplabeling
AT fernandomarianno changedetectionfromremotesensingtoguideopenstreetmaplabeling
AT johannesschmude changedetectionfromremotesensingtoguideopenstreetmaplabeling
AT normanbobroff changedetectionfromremotesensingtoguideopenstreetmaplabeling
AT weizhang changedetectionfromremotesensingtoguideopenstreetmaplabeling
AT carlosiebenschuh changedetectionfromremotesensingtoguideopenstreetmaplabeling
AT siyuanlu changedetectionfromremotesensingtoguideopenstreetmaplabeling