Study of high-order harmonic generation in xenon based on time-dependent density-functional theory

The high-order harmonic generation (HHG) in xenon is studied by using the time-dependent density-functional theory. The dynamics of all electrons on the outer 4th and 5th atomic shells is considered with subsequent separation of contributions of different atomic orbitals to the HHG amplitude. It is...

Full description

Bibliographic Details
Main Authors: A A Romanov, A A Silaev, T S Sarantseva, M V Frolov, N V Vvedenskii
Format: Article
Language:English
Published: IOP Publishing 2021-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/abe8a9
Description
Summary:The high-order harmonic generation (HHG) in xenon is studied by using the time-dependent density-functional theory. The dynamics of all electrons on the outer 4th and 5th atomic shells is considered with subsequent separation of contributions of different atomic orbitals to the HHG amplitude. It is shown that giant enhancement of HHG yield in a spectral region near 100 eV is caused by perturbation of the electron–electron interaction potential induced by recolliding photoelectron wavepacket originated from the 5 p _0 orbital. This perturbation leads to the collective oscillations of all orbitals on the 4th shell closely localized in space and strongly interacting with each other. The resulting HHG yield is enhanced by more than an order of magnitude compared with the response of the single 5 p _0 orbital. The high accuracy of the numerical results is confirmed by comparing the calculated HHG spectra and photoionization cross-sections with experimental results and an analytical parameterization of the HHG yield.
ISSN:1367-2630