Vertically Arranged Zinc Oxide Nanorods as Antireflection Layer for Crystalline Silicon Solar Cell: A Simulation Study of Photovoltaic Properties

This paper describes the unique antireflection (AR) layer of vertically arranged ZnO nanorods (NRs) on crystalline silicon (c-Si) solar cells and studies the charge transport and photovoltaic properties by simulation. The vertically arranged ZnO NRs were deposited on ZnO-seeded c-Si wafers by a simp...

Full description

Bibliographic Details
Main Authors: Deb Kumar Shah, Devendra KC, M. Shaheer Akhtar, Chong Yeal Kim, O-Bong Yang
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/17/6062
Description
Summary:This paper describes the unique antireflection (AR) layer of vertically arranged ZnO nanorods (NRs) on crystalline silicon (c-Si) solar cells and studies the charge transport and photovoltaic properties by simulation. The vertically arranged ZnO NRs were deposited on ZnO-seeded c-Si wafers by a simple low-temperature solution process. The lengths of the ZnO NRs were optimized by changing the reaction times. Highly dense and vertically arranged ZnO NRs were obtained over the c-Si wafer when the reaction time was 5 h. The deposited ZnO NRs on the c-Si wafers exhibited the lowest reflectance of ~7.5% at 838 nm, having a reasonable average reflectance of ~9.5% in the whole wavelength range (400–1000 nm). Using PC1D software, the charge transport and photovoltaic properties of c-Si solar cells were explored by considering the lengths of the ZnO NRs and the reflectance values. The 1.1 μm length of the ZnO NRs and a minimum average reflectance of 9.5% appeared to be the optimum values for achieving the highest power conversion efficiency of 14.88%. The simulation study for the vertically arranged ZnO NRs AR layers clearly reflects that the low-temperature deposited ZnO NRs on c-Si solar cells could pose a greater prospect in the manufacturing of low-cost c-Si solar cells.
ISSN:2076-3417