The Disruption of a Gene Encoding a Putative Arylesterase Impairs Pyruvate Dehydrogenase Complex Activity and Nitrogen Fixation in Sinorhizobium meliloti
Nitrogen-fixing Sinorhizobium meliloti cells depend upon dicarboxylic acids as carbon and energy sources. The metabolism of these intermediate compounds of the tri-chloroacetic acid cycle is dependent upon the availability of acetyl-coenzyme A (CoA). In bacteroids, the combined activities of malic e...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The American Phytopathological Society
2001-06-01
|
Series: | Molecular Plant-Microbe Interactions |
Subjects: | |
Online Access: | https://apsjournals.apsnet.org/doi/10.1094/MPMI.2001.14.6.811 |
Summary: | Nitrogen-fixing Sinorhizobium meliloti cells depend upon dicarboxylic acids as carbon and energy sources. The metabolism of these intermediate compounds of the tri-chloroacetic acid cycle is dependent upon the availability of acetyl-coenzyme A (CoA). In bacteroids, the combined activities of malic enzymes and pyruvate dehydrogenase (PDH) have been proposed to be responsible for the anaplerotic synthesis of acetyl-CoA. We obtained a S. meliloti mutant strain, PD3, in which a Tn5 insertion led to a significant decrease in the overall PDH activity. The genetic characterization of this mutant revealed that the transposon is located at the 3′ end of a gene (ada) encoding a putative arylesterase. The mutant PD3 is deficient in nitrogen fixation, which strengthens the physiological importance of PDH activity in the symbiosis of S. meliloti with alfalfa plants. |
---|---|
ISSN: | 0894-0282 1943-7706 |