Changes in Triterpenes in <i>Alismatis rhizoma</i> after Processing Based on Targeted Metabolomics Using UHPLC-QTOF-MS/MS

<i>Alismatis rhizoma</i> (AR) has been used as an herbal medicine in China for over a thousand years. Crude AR, salt-processed AR (SAR), and bran-processed AR (BAR) are recorded in the Pharmacopoeia of the People′s Republic of China. However, the differences of chemical composition betwe...

Full description

Bibliographic Details
Main Authors: Mengxiang Dai, Sen Li, Qingxin Shi, Xingliang Xiang, Yuehui Jin, Sha Wei, Lijun Zhang, Min Yang, Chengwu Song, Rongzeng Huang, Shuna Jin
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/27/1/185
Description
Summary:<i>Alismatis rhizoma</i> (AR) has been used as an herbal medicine in China for over a thousand years. Crude AR, salt-processed AR (SAR), and bran-processed AR (BAR) are recorded in the Pharmacopoeia of the People′s Republic of China. However, the differences of chemical composition between crude AR and its processing products remain limited. In this study, triterpenes were identified from crude AR, SAR, and BAR by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight-mass spectrometer (UHPLC-QTOF-MS/MS). Subsequently, the differences of triterpenes between the crude AR and processed ARs were compared via a targeted metabolomics approach. Finally, a total of 114 triterpenes were identified, of which 83, 100, and 103 triterpenes were found in crude AR, SAR, and BAR, respectively. After salt-processing, there were 17 triterpenes newly generated, 7 triterpenes with trends of increasing, and 37 triterpenes decreased. Meanwhile, 56 triterpenes including 21 newly generated and 35 with significant increases were observed in BAR. This study could be benefit to investigate the processing mechanism of AR, as well as support their clinical applications.
ISSN:1420-3049