به کارگیری روش های تخمین بعد ذاتی در استخراج ویژگی های بدست آمده از تصاویر راداری، ماهواره ای و لیدار به منظورشناسایی عوارض خاص شهری

امروزه ترکیب دادهها و تصاویری که از منابع مختلف سنجش از دوری به دست آمدهاند، به عنوان راهحلی بهینه به منظور استخراج اطلاعات بیشتر مطرح است، چرا که این دادهها با دید وسیع خود، رقومی بودن، تهیه بصورت دورهای، اطلاعات مختلفی را در اختیار محققین قرار میدهند. در این راستا، سنجندههای غیرفعال نوری به صورت گ...

Full description

Bibliographic Details
Main Authors: پرهام پهلوانی, مهدی حسنلو
Format: Article
Language:fas
Published: سازمان جغرافیایی نیروهای مسلح 2016-11-01
Series:اطلاعات جغرافیایی
Subjects:
Online Access:http://www.sepehr.org/article_23203_7ecd33287f830577ee6603d591f4269d.pdf
_version_ 1828499052378980352
author پرهام پهلوانی
مهدی حسنلو
author_facet پرهام پهلوانی
مهدی حسنلو
author_sort پرهام پهلوانی
collection DOAJ
description امروزه ترکیب دادهها و تصاویری که از منابع مختلف سنجش از دوری به دست آمدهاند، به عنوان راهحلی بهینه به منظور استخراج اطلاعات بیشتر مطرح است، چرا که این دادهها با دید وسیع خود، رقومی بودن، تهیه بصورت دورهای، اطلاعات مختلفی را در اختیار محققین قرار میدهند. در این راستا، سنجندههای غیرفعال نوری به صورت گسترده در نگاشت ساختارهای افقی مورد استفاده قرار میگیرند. دادههای راداری نیز با توجه به این که غالباً مستقل از شرایط جوی و به صورت شبانهروزی امکان جمعآوری دارند و نیز برخی ساختارهای زمینی و اهداف مصنوعی پاسخ ویژهای در فرکانس راداری دارند، تواناییهای تصاویر نوری را تکمیل میکنند. همچنین دادههای هوابرد لیدار نیز میتوانند اندازهگیریهای نمونهای با دقت بسیار بالا از ساختارهای قائم در اختیار قرار دهند. در نتیجه، استفاده همزمان دادههای نوری، راداری و لیدار میتواند اطلاعات بیشتری در کاربردهای متنوع فراهم نماید. در این تحقیق، با بکارگیری همزمان این سه دسته داده سعی بر شناسایی عوارض خاص شهری به شکل بهینه نمودیم. در این راستا، با بکارگیری و تولید توصیفگرهای مختلف (57 توصیفگر) و با استفاده از روشهای استخراج ویژگی (شامل PCA و ICA) و تخمین ابعاد ذاتی دادهها (شاملSML و NWHFC)، فضای بهینهای برای طبقهبندی نظارت شده ایجاد شد. پس از انجام طبقهبندی (روش K-NN) با استفاده از نتایج بدست آمده، توصیفگرهای (لایههای اطلاعاتی) تولید شده برای شناسایی عوارض خاص شهری شامل ساختمانها، راهها و پوشش گیاهی براساس دقت کلاسهبندی بدست آمده و گروهبندی شدند. نتایج عددی بدست آمده حاکی از کارایی بالای رویه پیشنهادی و نیز روشهای بکارگرفته شده تخمین بعد ذاتی و استخراج ویژگی است.
first_indexed 2024-12-11T13:18:00Z
format Article
id doaj.art-0c33474059604aefb74de0648bd1b44c
institution Directory Open Access Journal
issn 2588-3860
2588-3879
language fas
last_indexed 2024-12-11T13:18:00Z
publishDate 2016-11-01
publisher سازمان جغرافیایی نیروهای مسلح
record_format Article
series اطلاعات جغرافیایی
spelling doaj.art-0c33474059604aefb74de0648bd1b44c2022-12-22T01:05:57Zfasسازمان جغرافیایی نیروهای مسلحاطلاعات جغرافیایی2588-38602588-38792016-11-01259915517510.22131/sepehr.2016.2320323203به کارگیری روش های تخمین بعد ذاتی در استخراج ویژگی های بدست آمده از تصاویر راداری، ماهواره ای و لیدار به منظورشناسایی عوارض خاص شهریپرهام پهلوانی0مهدی حسنلو1استادیاردانشکده مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده های فنی دانشگاه تهراناستادیاردانشکده مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده های فنی دانشگاه تهرانامروزه ترکیب دادهها و تصاویری که از منابع مختلف سنجش از دوری به دست آمدهاند، به عنوان راهحلی بهینه به منظور استخراج اطلاعات بیشتر مطرح است، چرا که این دادهها با دید وسیع خود، رقومی بودن، تهیه بصورت دورهای، اطلاعات مختلفی را در اختیار محققین قرار میدهند. در این راستا، سنجندههای غیرفعال نوری به صورت گسترده در نگاشت ساختارهای افقی مورد استفاده قرار میگیرند. دادههای راداری نیز با توجه به این که غالباً مستقل از شرایط جوی و به صورت شبانهروزی امکان جمعآوری دارند و نیز برخی ساختارهای زمینی و اهداف مصنوعی پاسخ ویژهای در فرکانس راداری دارند، تواناییهای تصاویر نوری را تکمیل میکنند. همچنین دادههای هوابرد لیدار نیز میتوانند اندازهگیریهای نمونهای با دقت بسیار بالا از ساختارهای قائم در اختیار قرار دهند. در نتیجه، استفاده همزمان دادههای نوری، راداری و لیدار میتواند اطلاعات بیشتری در کاربردهای متنوع فراهم نماید. در این تحقیق، با بکارگیری همزمان این سه دسته داده سعی بر شناسایی عوارض خاص شهری به شکل بهینه نمودیم. در این راستا، با بکارگیری و تولید توصیفگرهای مختلف (57 توصیفگر) و با استفاده از روشهای استخراج ویژگی (شامل PCA و ICA) و تخمین ابعاد ذاتی دادهها (شاملSML و NWHFC)، فضای بهینهای برای طبقهبندی نظارت شده ایجاد شد. پس از انجام طبقهبندی (روش K-NN) با استفاده از نتایج بدست آمده، توصیفگرهای (لایههای اطلاعاتی) تولید شده برای شناسایی عوارض خاص شهری شامل ساختمانها، راهها و پوشش گیاهی براساس دقت کلاسهبندی بدست آمده و گروهبندی شدند. نتایج عددی بدست آمده حاکی از کارایی بالای رویه پیشنهادی و نیز روشهای بکارگرفته شده تخمین بعد ذاتی و استخراج ویژگی است.http://www.sepehr.org/article_23203_7ecd33287f830577ee6603d591f4269d.pdfتخمین بعد ذاتیطبقه بندی تصویرراهساختمانپوشش گیاهی
spellingShingle پرهام پهلوانی
مهدی حسنلو
به کارگیری روش های تخمین بعد ذاتی در استخراج ویژگی های بدست آمده از تصاویر راداری، ماهواره ای و لیدار به منظورشناسایی عوارض خاص شهری
اطلاعات جغرافیایی
تخمین بعد ذاتی
طبقه بندی تصویر
راه
ساختمان
پوشش گیاهی
title به کارگیری روش های تخمین بعد ذاتی در استخراج ویژگی های بدست آمده از تصاویر راداری، ماهواره ای و لیدار به منظورشناسایی عوارض خاص شهری
title_full به کارگیری روش های تخمین بعد ذاتی در استخراج ویژگی های بدست آمده از تصاویر راداری، ماهواره ای و لیدار به منظورشناسایی عوارض خاص شهری
title_fullStr به کارگیری روش های تخمین بعد ذاتی در استخراج ویژگی های بدست آمده از تصاویر راداری، ماهواره ای و لیدار به منظورشناسایی عوارض خاص شهری
title_full_unstemmed به کارگیری روش های تخمین بعد ذاتی در استخراج ویژگی های بدست آمده از تصاویر راداری، ماهواره ای و لیدار به منظورشناسایی عوارض خاص شهری
title_short به کارگیری روش های تخمین بعد ذاتی در استخراج ویژگی های بدست آمده از تصاویر راداری، ماهواره ای و لیدار به منظورشناسایی عوارض خاص شهری
title_sort به کارگیری روش های تخمین بعد ذاتی در استخراج ویژگی های بدست آمده از تصاویر راداری، ماهواره ای و لیدار به منظورشناسایی عوارض خاص شهری
topic تخمین بعد ذاتی
طبقه بندی تصویر
راه
ساختمان
پوشش گیاهی
url http://www.sepehr.org/article_23203_7ecd33287f830577ee6603d591f4269d.pdf
work_keys_str_mv AT prhạmphlwạny bhḵạrgyryrwsẖhạytkẖmynbʿddẖạtydrạstkẖrạjwyzẖgyhạybdstậmdhạztṣạwyrrạdạrymạhwạrhạywlydạrbhmnẓwrsẖnạsạyyʿwạrḍkẖạṣsẖhry
AT mhdyḥsnlw bhḵạrgyryrwsẖhạytkẖmynbʿddẖạtydrạstkẖrạjwyzẖgyhạybdstậmdhạztṣạwyrrạdạrymạhwạrhạywlydạrbhmnẓwrsẖnạsạyyʿwạrḍkẖạṣsẖhry