Effects of local nitrogen supply and nitrogen fertilizer variety coupling on rice nitrogen transport and soil nitrogen balance in paddy fields

IntroductionThis study aimed to provide the theoretical basis for formulating scientific and reasonable on-farm nitrogen (N) management measures and efficient strategic fertilization to understand the effects of localized N supply (LNS) and N fertilizer variety coupling on N transport and soil N bal...

Full description

Bibliographic Details
Main Authors: Ren Hu, Dakang Xiao, Zijuan Ding, Yuxian Cao, Jun Hou, Xuexia Wang
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-08-01
Series:Frontiers in Sustainable Food Systems
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fsufs.2023.1252324/full
Description
Summary:IntroductionThis study aimed to provide the theoretical basis for formulating scientific and reasonable on-farm nitrogen (N) management measures and efficient strategic fertilization to understand the effects of localized N supply (LNS) and N fertilizer variety coupling on N transport and soil N balance in rice fields.MethodsA 2-year field experiment (2020 and 2021) was conducted in Jingzhou, Hubei Province, which included the following six treatments: no N application (CK), farmers' fertilizer practice (FFP), and four LNS treatments, including two N application methods including mechanical side-deep fertilization (M) and root-zone fertilization (R), two N fertilizer types with urea (U), and controlled-release urea (CRU).ResultsCompared with FFP, LNS increased the N apparent translocation level from stems, sheathes, and leaves (TNT) and N uptake by 10.70–50.59% and 11.28–29.71%, respectively. In LNS, the levels of nitrite reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) under R increased by 13.81, 9.56, and 15.59%, respectively, compared with those under M, resulting in a significant increase in TNT by 8.58% and N uptake by 1.87%. Regarding the N fertilizer type, CRU significantly increased chlorophyll content by 7.27%, superoxide dismutase (SOD) and catalase (CAT) by 14.78 and 29.95% (p < 0.05), and NR, GS, and GOGAT by 44.41, 16.12, and 28.41% (p < 0.05), respectively, compared with that in U, which contributed to N absorption and transport. Moreover, CRUR significantly decreased N apparent loss by 50.04% compared with CRUM (p < 0.05).DiscussionConsidering the risk of soil N leaching and environmental protection, R should be selected as the recommended fertilization method. The combination of CRU and R is the most effective fertilization approach.
ISSN:2571-581X