Extended surfactants and their tailored applications for vegetable oils extraction: An overview☆
The vegetable oil extraction process from seeds and nuts depends on mechanical and solvent (usually n-hexane) extractions. Despite the efficiency of n-hexane, its use is nowadays questioned due to health, environmental, and technological issues. As an alternative to hexane extraction, several greene...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2021-01-01
|
Series: | Oilseeds and fats, crops and lipids |
Subjects: | |
Online Access: | https://www.ocl-journal.org/articles/ocl/full_html/2021/01/ocl200060/ocl200060.html |
_version_ | 1818603433710583808 |
---|---|
author | Gagnon Yancie Mhemdi Houcine Delbecq Frederic Van Hecke Elisabeth |
author_facet | Gagnon Yancie Mhemdi Houcine Delbecq Frederic Van Hecke Elisabeth |
author_sort | Gagnon Yancie |
collection | DOAJ |
description | The vegetable oil extraction process from seeds and nuts depends on mechanical and solvent (usually n-hexane) extractions. Despite the efficiency of n-hexane, its use is nowadays questioned due to health, environmental, and technological issues. As an alternative to hexane extraction, several greener solvents and extraction techniques have been developed and tested during the last decades. Among these alternatives, the Surfactant-Aqueous Extraction Process (SAEP) appears as a promising method. Initially developed for the petroleum sector, this method was then tested and optimized for vegetable oil extraction. Successful implementations at the laboratory scale led to slightly more than 90% oil yield, mainly by using so-called “extended surfactants”. Compare to conventional surfactants, these surfactants can efficiently solubilize a large amount of vegetable oil in water, despite the structural diversity and the bulkiness of vegetable oil molecules. The present review is devoted to extended surfactant applications to SAEP. This review summarizes and discusses the main findings related to the extended surfactant structures and properties, as well as the main experimental results on the SAEP, and the advantages and the current limitations towards a scaling-up of this promising process. |
first_indexed | 2024-12-16T13:23:06Z |
format | Article |
id | doaj.art-0c4ab2104e254df4905d51aaa0836d65 |
institution | Directory Open Access Journal |
issn | 2272-6977 2257-6614 |
language | English |
last_indexed | 2024-12-16T13:23:06Z |
publishDate | 2021-01-01 |
publisher | EDP Sciences |
record_format | Article |
series | Oilseeds and fats, crops and lipids |
spelling | doaj.art-0c4ab2104e254df4905d51aaa0836d652022-12-21T22:30:18ZengEDP SciencesOilseeds and fats, crops and lipids2272-69772257-66142021-01-0128710.1051/ocl/2020062ocl200060Extended surfactants and their tailored applications for vegetable oils extraction: An overview☆Gagnon YancieMhemdi HoucineDelbecq FredericVan Hecke ElisabethThe vegetable oil extraction process from seeds and nuts depends on mechanical and solvent (usually n-hexane) extractions. Despite the efficiency of n-hexane, its use is nowadays questioned due to health, environmental, and technological issues. As an alternative to hexane extraction, several greener solvents and extraction techniques have been developed and tested during the last decades. Among these alternatives, the Surfactant-Aqueous Extraction Process (SAEP) appears as a promising method. Initially developed for the petroleum sector, this method was then tested and optimized for vegetable oil extraction. Successful implementations at the laboratory scale led to slightly more than 90% oil yield, mainly by using so-called “extended surfactants”. Compare to conventional surfactants, these surfactants can efficiently solubilize a large amount of vegetable oil in water, despite the structural diversity and the bulkiness of vegetable oil molecules. The present review is devoted to extended surfactant applications to SAEP. This review summarizes and discusses the main findings related to the extended surfactant structures and properties, as well as the main experimental results on the SAEP, and the advantages and the current limitations towards a scaling-up of this promising process.https://www.ocl-journal.org/articles/ocl/full_html/2021/01/ocl200060/ocl200060.htmlextended surfactantsaqueous extractionvegetable oilsmicroemulsions |
spellingShingle | Gagnon Yancie Mhemdi Houcine Delbecq Frederic Van Hecke Elisabeth Extended surfactants and their tailored applications for vegetable oils extraction: An overview☆ Oilseeds and fats, crops and lipids extended surfactants aqueous extraction vegetable oils microemulsions |
title | Extended surfactants and their tailored applications for vegetable oils extraction: An overview☆ |
title_full | Extended surfactants and their tailored applications for vegetable oils extraction: An overview☆ |
title_fullStr | Extended surfactants and their tailored applications for vegetable oils extraction: An overview☆ |
title_full_unstemmed | Extended surfactants and their tailored applications for vegetable oils extraction: An overview☆ |
title_short | Extended surfactants and their tailored applications for vegetable oils extraction: An overview☆ |
title_sort | extended surfactants and their tailored applications for vegetable oils extraction an overview☆ |
topic | extended surfactants aqueous extraction vegetable oils microemulsions |
url | https://www.ocl-journal.org/articles/ocl/full_html/2021/01/ocl200060/ocl200060.html |
work_keys_str_mv | AT gagnonyancie extendedsurfactantsandtheirtailoredapplicationsforvegetableoilsextractionanoverview AT mhemdihoucine extendedsurfactantsandtheirtailoredapplicationsforvegetableoilsextractionanoverview AT delbecqfrederic extendedsurfactantsandtheirtailoredapplicationsforvegetableoilsextractionanoverview AT vanheckeelisabeth extendedsurfactantsandtheirtailoredapplicationsforvegetableoilsextractionanoverview |