A cortical attractor network with Martinotti cells driven by facilitating synapses.
The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negat...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2012-01-01
|
Series: | PLoS ONE |
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22523533/?tool=EBI |
_version_ | 1818718747807973376 |
---|---|
author | Pradeep Krishnamurthy Gilad Silberberg Anders Lansner |
author_facet | Pradeep Krishnamurthy Gilad Silberberg Anders Lansner |
author_sort | Pradeep Krishnamurthy |
collection | DOAJ |
description | The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought. |
first_indexed | 2024-12-17T19:55:58Z |
format | Article |
id | doaj.art-0c4af91e2e47488a881b86c39d23063b |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-17T19:55:58Z |
publishDate | 2012-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-0c4af91e2e47488a881b86c39d23063b2022-12-21T21:34:36ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-0174e3075210.1371/journal.pone.0030752A cortical attractor network with Martinotti cells driven by facilitating synapses.Pradeep KrishnamurthyGilad SilberbergAnders LansnerThe population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought.https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22523533/?tool=EBI |
spellingShingle | Pradeep Krishnamurthy Gilad Silberberg Anders Lansner A cortical attractor network with Martinotti cells driven by facilitating synapses. PLoS ONE |
title | A cortical attractor network with Martinotti cells driven by facilitating synapses. |
title_full | A cortical attractor network with Martinotti cells driven by facilitating synapses. |
title_fullStr | A cortical attractor network with Martinotti cells driven by facilitating synapses. |
title_full_unstemmed | A cortical attractor network with Martinotti cells driven by facilitating synapses. |
title_short | A cortical attractor network with Martinotti cells driven by facilitating synapses. |
title_sort | cortical attractor network with martinotti cells driven by facilitating synapses |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22523533/?tool=EBI |
work_keys_str_mv | AT pradeepkrishnamurthy acorticalattractornetworkwithmartinotticellsdrivenbyfacilitatingsynapses AT giladsilberberg acorticalattractornetworkwithmartinotticellsdrivenbyfacilitatingsynapses AT anderslansner acorticalattractornetworkwithmartinotticellsdrivenbyfacilitatingsynapses AT pradeepkrishnamurthy corticalattractornetworkwithmartinotticellsdrivenbyfacilitatingsynapses AT giladsilberberg corticalattractornetworkwithmartinotticellsdrivenbyfacilitatingsynapses AT anderslansner corticalattractornetworkwithmartinotticellsdrivenbyfacilitatingsynapses |