Extracting Production Rules for Cerebrovascular Examination Dataset through Mining of Non-Anomalous Association Rules

Today, patients generate a massive amount of health records through electronic health records (EHRs). Extracting usable knowledge of patients’ pathological conditions or diagnoses is essential for the reasoning process in rule-based systems to support the process of clinical decision makin...

Full description

Bibliographic Details
Main Authors: Chao Ou-Yang, Chandrawati Putri Wulandari, Mohammad Iqbal, Han-Cheng Wang, Chiehfeng Chen
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/22/4962
Description
Summary:Today, patients generate a massive amount of health records through electronic health records (EHRs). Extracting usable knowledge of patients’ pathological conditions or diagnoses is essential for the reasoning process in rule-based systems to support the process of clinical decision making. Association rule mining is capable of discovering hidden interesting knowledge and relations among attributes in datasets, including medical datasets, yet is more likely to produce many anomalous rules (i.e., subsumption and circular redundancy) depends on the predefined threshold, which lead to logical errors and affects the reasoning process of rule-based systems. Therefore, the challenge is to develop a method to extract concise rule bases and improve the coverage of non-anomalous rule bases, i.e., one that not only reduces anomalous rules but also finds the most comprehensive rules from the dataset. In this study, we generated non-anomalous association rules (NAARs) from a cerebrovascular examination dataset through several steps: obtaining a frequent closed itemset, generating association rule bases, subsumption checking, and circularity checking, to fit production rules (PRs) in rule-based systems. Toward the end, the rule inferencing part was performed by PROLOG to obtain possible conclusions toward a specific query given by a user. The experiment shows that compared with the traditional method, the proposed method eliminated a significant number of anomalous rules while improving computational time.
ISSN:2076-3417