Periodic solution of a bioeconomic fishery model by coincidence degree theory

In this article we use coincidence degree theory to study the existence of a positive periodic solutions to the following bioeconomic model in fishery dynamics \begin{equation*}\label{eq1.3} \begin{cases} \frac{dn}{dt} = n \left(r(t) \left(1-\frac{n}{K}\right)-\frac{q(t)E}{n+D}\right),\\ \frac{...

Full description

Bibliographic Details
Main Authors: Satyam Srivastava, Seshadev Padhi, Alexander Domoshnitsky
Format: Article
Language:English
Published: University of Szeged 2023-08-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10416
_version_ 1797352336722493440
author Satyam Srivastava
Seshadev Padhi
Alexander Domoshnitsky
author_facet Satyam Srivastava
Seshadev Padhi
Alexander Domoshnitsky
author_sort Satyam Srivastava
collection DOAJ
description In this article we use coincidence degree theory to study the existence of a positive periodic solutions to the following bioeconomic model in fishery dynamics \begin{equation*}\label{eq1.3} \begin{cases} \frac{dn}{dt} = n \left(r(t) \left(1-\frac{n}{K}\right)-\frac{q(t)E}{n+D}\right),\\ \frac{dE}{dt} = E\left(\frac{A(t)q(t)}{\alpha(t)} \frac{n}{n+D}-\frac{q^2(t)}{\alpha(t)} \frac{n^2E}{(n+D)^2}-c(t)\right), \end{cases} \end{equation*} where the functions $r,q,A,c$ and $\alpha$ are continuous positive $T$-periodic functions. This is the model of a coastal fishery represented as a single site with $n(t)$ is the fish stock biomass, and $E(t)$ is the fishing effort. Examples are given to strengthen our results.
first_indexed 2024-03-08T13:14:57Z
format Article
id doaj.art-0c675b89e24244499c85185119505516
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-03-08T13:14:57Z
publishDate 2023-08-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-0c675b89e24244499c851851195055162024-01-18T08:28:07ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752023-08-0120232911210.14232/ejqtde.2023.1.2910416Periodic solution of a bioeconomic fishery model by coincidence degree theorySatyam Srivastava0Seshadev Padhi1Alexander Domoshnitsky2Department of Mathematics, Ariel University, Ariel, IsraelBirla Institute of Technology, Mesra, Ranchi, IndiaAriel University, Ariel, IsraelIn this article we use coincidence degree theory to study the existence of a positive periodic solutions to the following bioeconomic model in fishery dynamics \begin{equation*}\label{eq1.3} \begin{cases} \frac{dn}{dt} = n \left(r(t) \left(1-\frac{n}{K}\right)-\frac{q(t)E}{n+D}\right),\\ \frac{dE}{dt} = E\left(\frac{A(t)q(t)}{\alpha(t)} \frac{n}{n+D}-\frac{q^2(t)}{\alpha(t)} \frac{n^2E}{(n+D)^2}-c(t)\right), \end{cases} \end{equation*} where the functions $r,q,A,c$ and $\alpha$ are continuous positive $T$-periodic functions. This is the model of a coastal fishery represented as a single site with $n(t)$ is the fish stock biomass, and $E(t)$ is the fishing effort. Examples are given to strengthen our results.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10416periodic solutioncoincidence degreeexistence of solution
spellingShingle Satyam Srivastava
Seshadev Padhi
Alexander Domoshnitsky
Periodic solution of a bioeconomic fishery model by coincidence degree theory
Electronic Journal of Qualitative Theory of Differential Equations
periodic solution
coincidence degree
existence of solution
title Periodic solution of a bioeconomic fishery model by coincidence degree theory
title_full Periodic solution of a bioeconomic fishery model by coincidence degree theory
title_fullStr Periodic solution of a bioeconomic fishery model by coincidence degree theory
title_full_unstemmed Periodic solution of a bioeconomic fishery model by coincidence degree theory
title_short Periodic solution of a bioeconomic fishery model by coincidence degree theory
title_sort periodic solution of a bioeconomic fishery model by coincidence degree theory
topic periodic solution
coincidence degree
existence of solution
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10416
work_keys_str_mv AT satyamsrivastava periodicsolutionofabioeconomicfisherymodelbycoincidencedegreetheory
AT seshadevpadhi periodicsolutionofabioeconomicfisherymodelbycoincidencedegreetheory
AT alexanderdomoshnitsky periodicsolutionofabioeconomicfisherymodelbycoincidencedegreetheory