Summary: | In this study, practically useful colorless polyimides (PIs) with low coefficients of thermal expansion (CTEs) and other desirable properties were prepared from hydrogenated pyromellitic dianhydride (1-<i>exo</i>,2-<i>exo</i>,4-<i>exo</i>,5-<i>exo</i>-cyclohexanetetracarboxylic dianhydride, H-PMDA). A modified one-pot polymerization method afforded a high-molecular-weight PI with sufficient film-forming ability from 2,2′-bis(trifluoromethyl)benzidine (TFMB) with a rod-like structure and H-PMDA. However, the PI film cast from its homogeneous solution did not have low CTEs, similar to the analogous system using <i>meta</i>-tolidine. To solve this problem, a series of amide- and amide-imide-containing diamines were designed and synthesized. The modified one-pot polymerization of H-PMDA and the diamines in <i>γ</i>-butyrolactone produced homogeneous, viscous, and stable solutions of high-molecular-weight PIs with high solid contents. The cast films of certain systems examined in this study simultaneously achieved low CTEs, high optical transparency, considerably high glass transition temperatures (<i>T</i><sub>g</sub>s), and sufficient ductility. A possible mechanism for the generation of low CTEs, which is closely related to the spontaneous in-plane orientation behavior during solution casting, was proposed. Certain H-PMDA-based PIs developed in this study are promising colorless heat-resistant plastic substrates for use in image display devices and other optical applications.
|