Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification
Hazelnut (HS) and walnut (WS) shells, an abundant by-product of the processing industries of these edible nuts, are traditionally considered as a low-value waste. However, they are a source of valuable compounds with an interesting chemical profile for the chemical and pharmaceutical sectors. In thi...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-09-01
|
Series: | Biomolecules |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-273X/10/10/1363 |
_version_ | 1797552667620278272 |
---|---|
author | René Herrera Jarl Hemming Annika Smeds Oihana Gordobil Stefan Willför Jalel Labidi |
author_facet | René Herrera Jarl Hemming Annika Smeds Oihana Gordobil Stefan Willför Jalel Labidi |
author_sort | René Herrera |
collection | DOAJ |
description | Hazelnut (HS) and walnut (WS) shells, an abundant by-product of the processing industries of these edible nuts, are traditionally considered as a low-value waste. However, they are a source of valuable compounds with an interesting chemical profile for the chemical and pharmaceutical sectors. In this study, the lipophilic and hydrophilic extracts present in HS and WS were quantified and identified, then the polar fractions were chromatographically separated, and their antioxidant capacity was studied. The experimental work includes the isolation of crude lipophilic and hydrophilic extracts by an accelerated extraction process, chromatographic analysis (gas chromatography-flame ionization (GC-FID), GC-mass spectroscopy (GC-MS), high-performance size-exclusion chromatography (HPSEC), thin-layer chromatography (TLC)), and quantification of the components. In addition, a thorough compositional characterization of the subgroups obtained by flash chromatography and their antioxidant capacity was carried out. The gravimetric concentrations showed different lipophilic/hydrophilic ratios (0.70 for HS and 0.23 for WS), indicating a higher proportion of polar compounds in WS than in HS. Moreover, the lipophilic extracts were principally composed of short-chain fatty acids (stearic, palmitic, and oleic acid), triglycerides, and sterols. The polar fractions were screened by thin-layer chromatography and then separated by flash chromatography, obtaining fractions free of fatty acids and sugar derivatives (97:3 in HS and 95:5 in WS), and mixtures richer in phenolic compounds and flavonoids such as guaiacyl derivatives, quercetin, pinobanksin, and catechin. The most polar fractions presented a higher antioxidant capacity than that of the crude extracts. |
first_indexed | 2024-03-10T16:04:20Z |
format | Article |
id | doaj.art-0c7e569737454c2aade6657709cea7fa |
institution | Directory Open Access Journal |
issn | 2218-273X |
language | English |
last_indexed | 2024-03-10T16:04:20Z |
publishDate | 2020-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Biomolecules |
spelling | doaj.art-0c7e569737454c2aade6657709cea7fa2023-11-20T14:58:25ZengMDPI AGBiomolecules2218-273X2020-09-011010136310.3390/biom10101363Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic PurificationRené Herrera0Jarl Hemming1Annika Smeds2Oihana Gordobil3Stefan Willför4Jalel Labidi5Chemical and Environmental Engineering Department, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 San Sebastián, SpainChemistry and Chemical Engineering Department, Åbo Akademi University, Process Chemistry Centre, Porthansgatan 3, FI-20500 Åbo, FinlandChemistry and Chemical Engineering Department, Åbo Akademi University, Process Chemistry Centre, Porthansgatan 3, FI-20500 Åbo, FinlandInnoRenew CoE, Livade 6, 6310 Izola, SloveniaChemistry and Chemical Engineering Department, Åbo Akademi University, Process Chemistry Centre, Porthansgatan 3, FI-20500 Åbo, FinlandChemical and Environmental Engineering Department, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 San Sebastián, SpainHazelnut (HS) and walnut (WS) shells, an abundant by-product of the processing industries of these edible nuts, are traditionally considered as a low-value waste. However, they are a source of valuable compounds with an interesting chemical profile for the chemical and pharmaceutical sectors. In this study, the lipophilic and hydrophilic extracts present in HS and WS were quantified and identified, then the polar fractions were chromatographically separated, and their antioxidant capacity was studied. The experimental work includes the isolation of crude lipophilic and hydrophilic extracts by an accelerated extraction process, chromatographic analysis (gas chromatography-flame ionization (GC-FID), GC-mass spectroscopy (GC-MS), high-performance size-exclusion chromatography (HPSEC), thin-layer chromatography (TLC)), and quantification of the components. In addition, a thorough compositional characterization of the subgroups obtained by flash chromatography and their antioxidant capacity was carried out. The gravimetric concentrations showed different lipophilic/hydrophilic ratios (0.70 for HS and 0.23 for WS), indicating a higher proportion of polar compounds in WS than in HS. Moreover, the lipophilic extracts were principally composed of short-chain fatty acids (stearic, palmitic, and oleic acid), triglycerides, and sterols. The polar fractions were screened by thin-layer chromatography and then separated by flash chromatography, obtaining fractions free of fatty acids and sugar derivatives (97:3 in HS and 95:5 in WS), and mixtures richer in phenolic compounds and flavonoids such as guaiacyl derivatives, quercetin, pinobanksin, and catechin. The most polar fractions presented a higher antioxidant capacity than that of the crude extracts.https://www.mdpi.com/2218-273X/10/10/1363nutshellsbiowaste valorizationaccelerated extractionchromatographic analysisfractionationphenolic compounds |
spellingShingle | René Herrera Jarl Hemming Annika Smeds Oihana Gordobil Stefan Willför Jalel Labidi Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification Biomolecules nutshells biowaste valorization accelerated extraction chromatographic analysis fractionation phenolic compounds |
title | Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification |
title_full | Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification |
title_fullStr | Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification |
title_full_unstemmed | Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification |
title_short | Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification |
title_sort | recovery of bioactive compounds from hazelnuts and walnuts shells quantitative qualitative analysis and chromatographic purification |
topic | nutshells biowaste valorization accelerated extraction chromatographic analysis fractionation phenolic compounds |
url | https://www.mdpi.com/2218-273X/10/10/1363 |
work_keys_str_mv | AT reneherrera recoveryofbioactivecompoundsfromhazelnutsandwalnutsshellsquantitativequalitativeanalysisandchromatographicpurification AT jarlhemming recoveryofbioactivecompoundsfromhazelnutsandwalnutsshellsquantitativequalitativeanalysisandchromatographicpurification AT annikasmeds recoveryofbioactivecompoundsfromhazelnutsandwalnutsshellsquantitativequalitativeanalysisandchromatographicpurification AT oihanagordobil recoveryofbioactivecompoundsfromhazelnutsandwalnutsshellsquantitativequalitativeanalysisandchromatographicpurification AT stefanwillfor recoveryofbioactivecompoundsfromhazelnutsandwalnutsshellsquantitativequalitativeanalysisandchromatographicpurification AT jalellabidi recoveryofbioactivecompoundsfromhazelnutsandwalnutsshellsquantitativequalitativeanalysisandchromatographicpurification |