Optimizing Floquet engineering for non-equilibrium steady states with gradient-based methods

Non-equilibrium steady states are created when a periodically driven quantum system is also incoherently interacting with an environment - as it is the case in most realistic situations. The notion of Floquet engineering refers to the manipulation of the properties of systems under periodic perturba...

Full description

Bibliographic Details
Main Author: Alberto Castro, Shunsuke A. Sato
Format: Article
Language:English
Published: SciPost 2023-07-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.15.1.029
_version_ 1797772150364438528
author Alberto Castro, Shunsuke A. Sato
author_facet Alberto Castro, Shunsuke A. Sato
author_sort Alberto Castro, Shunsuke A. Sato
collection DOAJ
description Non-equilibrium steady states are created when a periodically driven quantum system is also incoherently interacting with an environment - as it is the case in most realistic situations. The notion of Floquet engineering refers to the manipulation of the properties of systems under periodic perturbations. Although it more frequently refers to the coherent states of isolated systems (or to the transient phase for states that are weakly coupled to the environment), it may sometimes be of more interest to consider the final steady states that are reached after decoherence and dissipation take place. In this work, we demonstrate how those final states can be optimally tuned with respect to a given predefined metric, such as for example the maximization of the temporal average value of some observable, by using multicolor periodic perturbations. We show a computational framework that can be used for that purpose, and exemplify the concept using a simple model for the nitrogen-vacancy center in diamond: the goal in this case is to find the driving periodic magnetic field that maximizes a time-averaged spin component. We show that, for example, this technique permits to prepare states whose spin values are forbidden in thermal equilibrium at any temperature.
first_indexed 2024-03-12T21:46:54Z
format Article
id doaj.art-0c8740bee62b4696877d85b4391b4277
institution Directory Open Access Journal
issn 2542-4653
language English
last_indexed 2024-03-12T21:46:54Z
publishDate 2023-07-01
publisher SciPost
record_format Article
series SciPost Physics
spelling doaj.art-0c8740bee62b4696877d85b4391b42772023-07-26T07:59:25ZengSciPostSciPost Physics2542-46532023-07-0115102910.21468/SciPostPhys.15.1.029Optimizing Floquet engineering for non-equilibrium steady states with gradient-based methodsAlberto Castro, Shunsuke A. SatoNon-equilibrium steady states are created when a periodically driven quantum system is also incoherently interacting with an environment - as it is the case in most realistic situations. The notion of Floquet engineering refers to the manipulation of the properties of systems under periodic perturbations. Although it more frequently refers to the coherent states of isolated systems (or to the transient phase for states that are weakly coupled to the environment), it may sometimes be of more interest to consider the final steady states that are reached after decoherence and dissipation take place. In this work, we demonstrate how those final states can be optimally tuned with respect to a given predefined metric, such as for example the maximization of the temporal average value of some observable, by using multicolor periodic perturbations. We show a computational framework that can be used for that purpose, and exemplify the concept using a simple model for the nitrogen-vacancy center in diamond: the goal in this case is to find the driving periodic magnetic field that maximizes a time-averaged spin component. We show that, for example, this technique permits to prepare states whose spin values are forbidden in thermal equilibrium at any temperature.https://scipost.org/SciPostPhys.15.1.029
spellingShingle Alberto Castro, Shunsuke A. Sato
Optimizing Floquet engineering for non-equilibrium steady states with gradient-based methods
SciPost Physics
title Optimizing Floquet engineering for non-equilibrium steady states with gradient-based methods
title_full Optimizing Floquet engineering for non-equilibrium steady states with gradient-based methods
title_fullStr Optimizing Floquet engineering for non-equilibrium steady states with gradient-based methods
title_full_unstemmed Optimizing Floquet engineering for non-equilibrium steady states with gradient-based methods
title_short Optimizing Floquet engineering for non-equilibrium steady states with gradient-based methods
title_sort optimizing floquet engineering for non equilibrium steady states with gradient based methods
url https://scipost.org/SciPostPhys.15.1.029
work_keys_str_mv AT albertocastroshunsukeasato optimizingfloquetengineeringfornonequilibriumsteadystateswithgradientbasedmethods