Uniqueness of entire solutions to quasilinear equations of p-Laplace type

<p>We prove the uniqueness property for a class of entire solutions to the equation</p> <p class="disp_formula"> $ \begin{equation*} \left\{ \begin{array}{ll} -{\rm div}\, \mathcal{A}(x,\nabla u) = \sigma, \quad u\geq 0 \quad {\text{in }} \mathbb{R}^n, \\ {\liminf\...

Full description

Bibliographic Details
Main Authors: Nguyen Cong Phuc, Igor E. Verbitsky
Format: Article
Language:English
Published: AIMS Press 2023-09-01
Series:Mathematics in Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mine.2023068?viewType=HTML
_version_ 1797659016986361856
author Nguyen Cong Phuc
Igor E. Verbitsky
author_facet Nguyen Cong Phuc
Igor E. Verbitsky
author_sort Nguyen Cong Phuc
collection DOAJ
description <p>We prove the uniqueness property for a class of entire solutions to the equation</p> <p class="disp_formula"> $ \begin{equation*} \left\{ \begin{array}{ll} -{\rm div}\, \mathcal{A}(x,\nabla u) = \sigma, \quad u\geq 0 \quad {\text{in }} \mathbb{R}^n, \\ {\liminf\limits_{|x|\rightarrow \infty}}\, u = 0, \end{array} \right. \end{equation*} $ </p> <p>where $ \sigma $ is a nonnegative locally finite measure in $ \mathbb{R}^n $, absolutely continuous with respect to the $ p $-capacity, and $ {\rm div}\, \mathcal{A}(x, \nabla u) $ is the $ \mathcal{A} $-Laplace operator, under standard growth and monotonicity assumptions of order $ p $ ($ 1 &lt; p &lt; \infty $) on $ \mathcal{A}(x, \xi) $ ($ x, \xi \in \mathbb{R}^n $); the model case $ \mathcal{A}(x, \xi) = \xi | \xi |^{p-2} $ corresponds to the $ p $-Laplace operator $ \Delta_p $ on $ \mathbb{R}^n $. Our main results establish uniqueness of solutions to a similar problem,</p> <p class="disp_formula">$ \begin{equation*} \left\{ \begin{array}{ll} -{\rm div}\, \mathcal{A}(x,\nabla u) = \sigma u^q +\mu, \quad u\geq 0 \quad {\text{in }} \mathbb{R}^n, \\ {\liminf\limits_{|x|\rightarrow \infty}}\, u = 0, \end{array} \right. \end{equation*} $</p> <p>in the sub-natural growth case $ 0 &lt; q &lt; p-1 $, where $ \mu, \sigma $ are nonnegative locally finite measures in $ \mathbb{R}^n $, absolutely continuous with respect to the $ p $-capacity, and $ \mathcal{A}(x, \xi) $ satisfies an additional homogeneity condition, which holds in particular for the $ p $-Laplace operator.</p>
first_indexed 2024-03-11T18:07:53Z
format Article
id doaj.art-0c95eb586adb4177b446869e910c7c29
institution Directory Open Access Journal
issn 2640-3501
language English
last_indexed 2024-03-11T18:07:53Z
publishDate 2023-09-01
publisher AIMS Press
record_format Article
series Mathematics in Engineering
spelling doaj.art-0c95eb586adb4177b446869e910c7c292023-10-17T01:15:50ZengAIMS PressMathematics in Engineering2640-35012023-09-015313310.3934/mine.2023068Uniqueness of entire solutions to quasilinear equations of p-Laplace typeNguyen Cong Phuc0Igor E. Verbitsky11. Department of Mathematics, Louisiana State University, 303 Lockett Hall, Baton Rouge, LA 70803, USA2. Department of Mathematics, University of Missouri, Columbia, MO 65211, USA<p>We prove the uniqueness property for a class of entire solutions to the equation</p> <p class="disp_formula"> $ \begin{equation*} \left\{ \begin{array}{ll} -{\rm div}\, \mathcal{A}(x,\nabla u) = \sigma, \quad u\geq 0 \quad {\text{in }} \mathbb{R}^n, \\ {\liminf\limits_{|x|\rightarrow \infty}}\, u = 0, \end{array} \right. \end{equation*} $ </p> <p>where $ \sigma $ is a nonnegative locally finite measure in $ \mathbb{R}^n $, absolutely continuous with respect to the $ p $-capacity, and $ {\rm div}\, \mathcal{A}(x, \nabla u) $ is the $ \mathcal{A} $-Laplace operator, under standard growth and monotonicity assumptions of order $ p $ ($ 1 &lt; p &lt; \infty $) on $ \mathcal{A}(x, \xi) $ ($ x, \xi \in \mathbb{R}^n $); the model case $ \mathcal{A}(x, \xi) = \xi | \xi |^{p-2} $ corresponds to the $ p $-Laplace operator $ \Delta_p $ on $ \mathbb{R}^n $. Our main results establish uniqueness of solutions to a similar problem,</p> <p class="disp_formula">$ \begin{equation*} \left\{ \begin{array}{ll} -{\rm div}\, \mathcal{A}(x,\nabla u) = \sigma u^q +\mu, \quad u\geq 0 \quad {\text{in }} \mathbb{R}^n, \\ {\liminf\limits_{|x|\rightarrow \infty}}\, u = 0, \end{array} \right. \end{equation*} $</p> <p>in the sub-natural growth case $ 0 &lt; q &lt; p-1 $, where $ \mu, \sigma $ are nonnegative locally finite measures in $ \mathbb{R}^n $, absolutely continuous with respect to the $ p $-capacity, and $ \mathcal{A}(x, \xi) $ satisfies an additional homogeneity condition, which holds in particular for the $ p $-Laplace operator.</p>https://www.aimspress.com/article/doi/10.3934/mine.2023068?viewType=HTMLquasilinear equationsp-laplaceentire solutionsuniqueness of solutionssub-natural growth
spellingShingle Nguyen Cong Phuc
Igor E. Verbitsky
Uniqueness of entire solutions to quasilinear equations of p-Laplace type
Mathematics in Engineering
quasilinear equations
p-laplace
entire solutions
uniqueness of solutions
sub-natural growth
title Uniqueness of entire solutions to quasilinear equations of p-Laplace type
title_full Uniqueness of entire solutions to quasilinear equations of p-Laplace type
title_fullStr Uniqueness of entire solutions to quasilinear equations of p-Laplace type
title_full_unstemmed Uniqueness of entire solutions to quasilinear equations of p-Laplace type
title_short Uniqueness of entire solutions to quasilinear equations of p-Laplace type
title_sort uniqueness of entire solutions to quasilinear equations of p laplace type
topic quasilinear equations
p-laplace
entire solutions
uniqueness of solutions
sub-natural growth
url https://www.aimspress.com/article/doi/10.3934/mine.2023068?viewType=HTML
work_keys_str_mv AT nguyencongphuc uniquenessofentiresolutionstoquasilinearequationsofplaplacetype
AT igoreverbitsky uniquenessofentiresolutionstoquasilinearequationsofplaplacetype