Modelling the diurnal and seasonal dynamics of soil CO<sub>2</sub> exchange in a semiarid ecosystem with high plant–interspace heterogeneity

We used process-based modelling to investigate the roles of carbon-flux (C-flux) components and plant–interspace heterogeneities in regulating soil CO<sub>2</sub> exchanges (<i>F</i><sub>S</sub>) in a dryland ecosystem with sparse vegetation. To simulate the di...

Full description

Bibliographic Details
Main Authors: J. Gong, B. Wang, X. Jia, W. Feng, T. Zha, S. Kellomäki, H. Peltola
Format: Article
Language:English
Published: Copernicus Publications 2018-01-01
Series:Biogeosciences
Online Access:https://www.biogeosciences.net/15/115/2018/bg-15-115-2018.pdf
Description
Summary:We used process-based modelling to investigate the roles of carbon-flux (C-flux) components and plant–interspace heterogeneities in regulating soil CO<sub>2</sub> exchanges (<i>F</i><sub>S</sub>) in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of <i>F</i><sub>S</sub>, the modelling considered simultaneously the CO<sub>2</sub> production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation). The model was parameterized and validated with multivariate data measured during the years 2013–2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO<sub>2</sub> dissolution and delay the emission of CO<sub>2</sub> produced from rooting zone. In addition, an ineligible fraction of respired CO<sub>2</sub> might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO<sub>2</sub> source to sink due to the activated photosynthesis of biocrust but the restricted CO<sub>2</sub> emissions from subsoil. The presence of plant cover could decrease the root-zone CO<sub>2</sub> production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant–interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO<sub>2</sub> efflux dynamics in dryland ecosystems.
ISSN:1726-4170
1726-4189