A competitive binding between O2 and epoxy with carbon nanotubes
Simulation and observation reveal a competitive binding between O2 and epoxy with carbon nanotubes. Air absorption limits tube-polymer interacting coverage and weakens the van der Waals forces. As O2 is removed the tube-polymer strongly couples and coupling is conformed in a parallel fashion. Electr...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2017-09-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/1.4999285 |
Summary: | Simulation and observation reveal a competitive binding between O2 and epoxy with carbon nanotubes. Air absorption limits tube-polymer interacting coverage and weakens the van der Waals forces. As O2 is removed the tube-polymer strongly couples and coupling is conformed in a parallel fashion. Electron microscopy verifies tubes to be weakly bonded with polymer and band-shifts of raman arise from air pressure acting on C-C bonds. |
---|---|
ISSN: | 2158-3226 |