Analytical Solution for the Ultimate Compression Capacity of Unbonded Steel-Mesh-Reinforced Rubber Bearings
Unbonded steel-mesh-reinforced rubber bearings (USRBs) have been proposed as an alternative isolation bearing for small-to-medium-span highway bridges. It replaces the steel plate reinforcement of common unbonded laminated rubber bearings (ULNR) with special steel wire meshes, resulting in improved...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-03-01
|
Series: | Buildings |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-5309/14/3/839 |
_version_ | 1797241705872752640 |
---|---|
author | Han Li Shengze Tian Xinzhi Dang |
author_facet | Han Li Shengze Tian Xinzhi Dang |
author_sort | Han Li |
collection | DOAJ |
description | Unbonded steel-mesh-reinforced rubber bearings (USRBs) have been proposed as an alternative isolation bearing for small-to-medium-span highway bridges. It replaces the steel plate reinforcement of common unbonded laminated rubber bearings (ULNR) with special steel wire meshes, resulting in improved lateral properties and seismic performance. However, the impact of this novel steel wire mesh reinforcement on the ultimate compression capacity of USRB has not been studied. To this end, theoretical and experimental analysis of the ultimate compression capacity of USRBs were carried out. The closed-form analytical solution of the ultimate compression capacity of USRBs was derived from a simplified USRB model employing elasticity theory. A parametric study was conducted considering the geometric and material properties. Ultimate compression tests were conducted on 19 USRB specimens to further calibrate the analytical solution, considering the influence of the number of reinforcement layers. An efficient solution for USRBs’ ultimate compression capacity was obtained via multilinear regression of the calibrated analytical results. The efficient solution can simplify the estimation of USRBs’ ultimate compression capacity while maintaining the same accuracy as the calibrated solution. Based on the efficient solution, the design process of a USRB with a specific ultimate compression capacity was illustrated. |
first_indexed | 2024-04-24T18:27:35Z |
format | Article |
id | doaj.art-0cb002dac22145a3b2767f878e96b438 |
institution | Directory Open Access Journal |
issn | 2075-5309 |
language | English |
last_indexed | 2024-04-24T18:27:35Z |
publishDate | 2024-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Buildings |
spelling | doaj.art-0cb002dac22145a3b2767f878e96b4382024-03-27T13:29:41ZengMDPI AGBuildings2075-53092024-03-0114383910.3390/buildings14030839Analytical Solution for the Ultimate Compression Capacity of Unbonded Steel-Mesh-Reinforced Rubber BearingsHan Li0Shengze Tian1Xinzhi Dang2Applied Lab for Advanced Materials & Structures (ALAMS), School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, CanadaSchool of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, CanadaDepartment of Bridge Engineering, Tongji University, Shanghai 200092, ChinaUnbonded steel-mesh-reinforced rubber bearings (USRBs) have been proposed as an alternative isolation bearing for small-to-medium-span highway bridges. It replaces the steel plate reinforcement of common unbonded laminated rubber bearings (ULNR) with special steel wire meshes, resulting in improved lateral properties and seismic performance. However, the impact of this novel steel wire mesh reinforcement on the ultimate compression capacity of USRB has not been studied. To this end, theoretical and experimental analysis of the ultimate compression capacity of USRBs were carried out. The closed-form analytical solution of the ultimate compression capacity of USRBs was derived from a simplified USRB model employing elasticity theory. A parametric study was conducted considering the geometric and material properties. Ultimate compression tests were conducted on 19 USRB specimens to further calibrate the analytical solution, considering the influence of the number of reinforcement layers. An efficient solution for USRBs’ ultimate compression capacity was obtained via multilinear regression of the calibrated analytical results. The efficient solution can simplify the estimation of USRBs’ ultimate compression capacity while maintaining the same accuracy as the calibrated solution. Based on the efficient solution, the design process of a USRB with a specific ultimate compression capacity was illustrated.https://www.mdpi.com/2075-5309/14/3/839compression capacityunbonded steel-mesh-reinforced rubber bearingfiber-reinforced rubber bearinganalytical analysisultimate compression testbearing design |
spellingShingle | Han Li Shengze Tian Xinzhi Dang Analytical Solution for the Ultimate Compression Capacity of Unbonded Steel-Mesh-Reinforced Rubber Bearings Buildings compression capacity unbonded steel-mesh-reinforced rubber bearing fiber-reinforced rubber bearing analytical analysis ultimate compression test bearing design |
title | Analytical Solution for the Ultimate Compression Capacity of Unbonded Steel-Mesh-Reinforced Rubber Bearings |
title_full | Analytical Solution for the Ultimate Compression Capacity of Unbonded Steel-Mesh-Reinforced Rubber Bearings |
title_fullStr | Analytical Solution for the Ultimate Compression Capacity of Unbonded Steel-Mesh-Reinforced Rubber Bearings |
title_full_unstemmed | Analytical Solution for the Ultimate Compression Capacity of Unbonded Steel-Mesh-Reinforced Rubber Bearings |
title_short | Analytical Solution for the Ultimate Compression Capacity of Unbonded Steel-Mesh-Reinforced Rubber Bearings |
title_sort | analytical solution for the ultimate compression capacity of unbonded steel mesh reinforced rubber bearings |
topic | compression capacity unbonded steel-mesh-reinforced rubber bearing fiber-reinforced rubber bearing analytical analysis ultimate compression test bearing design |
url | https://www.mdpi.com/2075-5309/14/3/839 |
work_keys_str_mv | AT hanli analyticalsolutionfortheultimatecompressioncapacityofunbondedsteelmeshreinforcedrubberbearings AT shengzetian analyticalsolutionfortheultimatecompressioncapacityofunbondedsteelmeshreinforcedrubberbearings AT xinzhidang analyticalsolutionfortheultimatecompressioncapacityofunbondedsteelmeshreinforcedrubberbearings |