Characterising Radioactive Caesium Leaching from Incineration Ash of Municipal Solid Waste in Fukushima and the Inhibitory Effect of Acid Clay

Following the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident caused by the 2011 Tōhoku earthquake and tsunami, radioactive caesium (r-Cs) was detected in the ash generated by municipal solid waste (MSW) incineration facilities in Fukushima Prefecture. This has led to concerns of r-Cs leachin...

Full description

Bibliographic Details
Main Author: Naoharu Murasawa
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Recycling
Subjects:
Online Access:https://www.mdpi.com/2313-4321/6/3/56
Description
Summary:Following the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident caused by the 2011 Tōhoku earthquake and tsunami, radioactive caesium (r-Cs) was detected in the ash generated by municipal solid waste (MSW) incineration facilities in Fukushima Prefecture. This has led to concerns of r-Cs leaching and subsequent environmental contamination during recycling or landfill disposal. Therefore, it is crucial that the relevant authorities have a thorough understanding of r-Cs leaching behavior to establish suitable prevention methods. In this study, we collected r-Cs-contaminated fly and bottom ash (FA and BA) samples from five MSW incineration facilities in Fukushima Prefecture and conducted tests to clarify their basic physical properties and r-Cs leaching properties. We also examined the possibility of preventing r-Cs leaching by adding 5 wt% acid clay to the FA. FA had greater chloride content and r-Cs leaching rate than BA and was found to absorb moisture and deliquesce when stored under high-humidity conditions. However, the addition of acid clay effectively prevented r-Cs leaching upon contact with moisture. From the results, we propose some specific recommendations to counter the leaching of r-Cs from FA at MSW incineration facilities, which will limit r-Cs leaching during recycling or landfill processes.
ISSN:2313-4321