Validation of a Model for Estimating the Strength of a Vortex Created from the Bound Circulation of a Vortex Generator
A hypothesis was tested and validated for predicting the vortex strength induced by a vortex generator in wall-bounded flow by combining the knowledge of the Vortex Generator (VG) geometry and the approaching boundary layer velocity distribution. In this paper, the spanwise distribution of bound cir...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-07-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/12/14/2781 |
_version_ | 1798040033003831296 |
---|---|
author | Martin O. L. Hansen Antonis Charalampous Jean-Marc Foucaut Christophe Cuvier Clara M. Velte |
author_facet | Martin O. L. Hansen Antonis Charalampous Jean-Marc Foucaut Christophe Cuvier Clara M. Velte |
author_sort | Martin O. L. Hansen |
collection | DOAJ |
description | A hypothesis was tested and validated for predicting the vortex strength induced by a vortex generator in wall-bounded flow by combining the knowledge of the Vortex Generator (VG) geometry and the approaching boundary layer velocity distribution. In this paper, the spanwise distribution of bound circulation on a vortex generator was computed by integrating the pressure force along the VG height, calculated using Computational Fluid Dynamics (CFD). It was then assumed that all this bound circulation was shed into a wake to fulfill Helmholtz’s theorem which then curls up into one primary tip vortex. To validate this, the trailed circulation estimated from the distribution of the bound circulation was compared to the one in the wake behind the vortex generator, determined directly from the wake velocities at some downstream distance. In practical situations, the pressure distribution on a vane is unknown and consequently other estimates of the spanwise force distribution on a VG must instead be applied, such as using 2D airfoil data corresponding to the VG geometry at each wall-normal distance. Such models have previously been proposed and used as an engineering tool to aid preliminary VG design. Therefore, it is not the purpose of this paper to refine such engineering models, but rather to validate their assumptions, such as applying a lifting line model on a VG that has a very low aspect ratio and is placed in a wall boundary layer. Herein, high Reynolds number boundary layer measurements of VG-induced flow were used to validate the Reynolds-Averaged Navier−Stokes (RANS) model circulation results, which were used for further illustration and validation of the hypothesis. |
first_indexed | 2024-04-11T22:01:55Z |
format | Article |
id | doaj.art-0cd5a715451e4231adc80cfb94bf4bf2 |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-04-11T22:01:55Z |
publishDate | 2019-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-0cd5a715451e4231adc80cfb94bf4bf22022-12-22T04:00:52ZengMDPI AGEnergies1996-10732019-07-011214278110.3390/en12142781en12142781Validation of a Model for Estimating the Strength of a Vortex Created from the Bound Circulation of a Vortex GeneratorMartin O. L. Hansen0Antonis Charalampous1Jean-Marc Foucaut2Christophe Cuvier3Clara M. Velte4Department of Wind Energy, Technical University of Denmark, 2800 Kgs. Lyngby, DenmarkON TE PD5X LACS LC LOADS Department, Siemens Gamesa Renewable Energy (RDT Engineers), 7330 Brande, DenmarkUniv. Lille, CNRS, ONERA, Centrale Lille, Arts et Metiers ParisTech, FRE2017, Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet (LMFL), F-59000 Lille, FranceUniv. Lille, CNRS, ONERA, Centrale Lille, Arts et Metiers ParisTech, FRE2017, Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet (LMFL), F-59000 Lille, FranceDepartment of Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, DenmarkA hypothesis was tested and validated for predicting the vortex strength induced by a vortex generator in wall-bounded flow by combining the knowledge of the Vortex Generator (VG) geometry and the approaching boundary layer velocity distribution. In this paper, the spanwise distribution of bound circulation on a vortex generator was computed by integrating the pressure force along the VG height, calculated using Computational Fluid Dynamics (CFD). It was then assumed that all this bound circulation was shed into a wake to fulfill Helmholtz’s theorem which then curls up into one primary tip vortex. To validate this, the trailed circulation estimated from the distribution of the bound circulation was compared to the one in the wake behind the vortex generator, determined directly from the wake velocities at some downstream distance. In practical situations, the pressure distribution on a vane is unknown and consequently other estimates of the spanwise force distribution on a VG must instead be applied, such as using 2D airfoil data corresponding to the VG geometry at each wall-normal distance. Such models have previously been proposed and used as an engineering tool to aid preliminary VG design. Therefore, it is not the purpose of this paper to refine such engineering models, but rather to validate their assumptions, such as applying a lifting line model on a VG that has a very low aspect ratio and is placed in a wall boundary layer. Herein, high Reynolds number boundary layer measurements of VG-induced flow were used to validate the Reynolds-Averaged Navier−Stokes (RANS) model circulation results, which were used for further illustration and validation of the hypothesis.https://www.mdpi.com/1996-1073/12/14/2781vortex generatorsturbulent boundary layer flow controlbound circulationtrailed circulation |
spellingShingle | Martin O. L. Hansen Antonis Charalampous Jean-Marc Foucaut Christophe Cuvier Clara M. Velte Validation of a Model for Estimating the Strength of a Vortex Created from the Bound Circulation of a Vortex Generator Energies vortex generators turbulent boundary layer flow control bound circulation trailed circulation |
title | Validation of a Model for Estimating the Strength of a Vortex Created from the Bound Circulation of a Vortex Generator |
title_full | Validation of a Model for Estimating the Strength of a Vortex Created from the Bound Circulation of a Vortex Generator |
title_fullStr | Validation of a Model for Estimating the Strength of a Vortex Created from the Bound Circulation of a Vortex Generator |
title_full_unstemmed | Validation of a Model for Estimating the Strength of a Vortex Created from the Bound Circulation of a Vortex Generator |
title_short | Validation of a Model for Estimating the Strength of a Vortex Created from the Bound Circulation of a Vortex Generator |
title_sort | validation of a model for estimating the strength of a vortex created from the bound circulation of a vortex generator |
topic | vortex generators turbulent boundary layer flow control bound circulation trailed circulation |
url | https://www.mdpi.com/1996-1073/12/14/2781 |
work_keys_str_mv | AT martinolhansen validationofamodelforestimatingthestrengthofavortexcreatedfromtheboundcirculationofavortexgenerator AT antonischaralampous validationofamodelforestimatingthestrengthofavortexcreatedfromtheboundcirculationofavortexgenerator AT jeanmarcfoucaut validationofamodelforestimatingthestrengthofavortexcreatedfromtheboundcirculationofavortexgenerator AT christophecuvier validationofamodelforestimatingthestrengthofavortexcreatedfromtheboundcirculationofavortexgenerator AT claramvelte validationofamodelforestimatingthestrengthofavortexcreatedfromtheboundcirculationofavortexgenerator |