A 5-nV/√Hz Chopper Negative-R Stabilization Preamplifier for Audio Applications

This paper presents a low-noise and low-power audio preamplifier. The proposed low-noise preamplifier employs a delay-time chopper stabilization (CHS) technique and a negative-R circuit, both in the auxiliary amplifier to cancel the non-idealities of the main amplifier. The proposed technique makes...

Full description

Bibliographic Details
Main Authors: Jamel Nebhen, Khaled Alnowaiser, Stephane Meillere
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/11/5/478
Description
Summary:This paper presents a low-noise and low-power audio preamplifier. The proposed low-noise preamplifier employs a delay-time chopper stabilization (CHS) technique and a negative-R circuit, both in the auxiliary amplifier to cancel the non-idealities of the main amplifier. The proposed technique makes it possible to mitigate the preamplifier 1/<i>f</i> noise and thermal noise and improve its linearity. The low-noise preamplifier is implemented in 65 nm complementary metal-oxide semiconductor (CMOS) technology. The supply voltage is 1.2 V, while the power consumption is 159 µW, and the core area is 192 µm<sup>2</sup>. The proposed circuit of the preamplifier was fabricated and measured. From the measurement results over a signal bandwidth of 20 kHz, it achieves a signal-to-noise ratio (SNR) of 80 dB, an equivalent-input referred noise of 5 nV/√Hz and a noise efficiency factor (NEF) of 1.9 within the frequency range from 1 Hz to 20 kHz.
ISSN:2072-666X