Optimizing the sensing performance of amperometric creatinine detection based on creatinine deiminase/Nafion®-nanostructured polyaniline composite film by mixture design method

Nafion®-nanostructured polyaniline (nsPANi) composite film is prepared using cyclic voltammetry (CV) and immobilized with creatinine deiminase (CD) enzyme and is used to sense creatinine in a buffer phosphate solution. The conditions for preparing Nafion®-nsPANi composite film are optimized by using...

Full description

Bibliographic Details
Main Authors: Jing-Shan Do, Yu-Hsuan Chang
Format: Article
Language:English
Published: Elsevier 2023-06-01
Series:Sensors and Actuators Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666053922000625
Description
Summary:Nafion®-nanostructured polyaniline (nsPANi) composite film is prepared using cyclic voltammetry (CV) and immobilized with creatinine deiminase (CD) enzyme and is used to sense creatinine in a buffer phosphate solution. The conditions for preparing Nafion®-nsPANi composite film are optimized by using a mixture design for which the sensitivity is the response. The relationship between the sensitivity of the amperometric creatinine biosensor (y) and the normalized aniline concentration (Y1), HCl concentration (Y2) and scanning rate (Y3) is y = 119.44Y1 + 45.23Y2 + 100.93Y3 + 255.69Y1Y2 + 313.16Y1Y3 + 430.56Y1Y2Y3The maximum sensitivity of an amperometric creatinine biosensor that is constructed using Nafion®-nsPANi composite film in 0.0943 M aniline, 0.9024 M HCl and using a scanning rate of 27.88 mV s − 1 is 2013.2 μA mM−1 cm−2, which is 54.9% better than the sensitivity of a conventional experimental technique. The amperometric creatinine biosensor is 6.60% less sensitive after sensing 0.15 mM creatinine 240 times. The amperometric creatinine biosensor incurs insignificant interference in 0.138 mM urea, 0.085 mM ascorbic acid (AA) and 5.54 mM glucose.
ISSN:2666-0539