Differential Responses of Plant Primary Productivity to Nutrient Addition in Natural and Restored Alpine Grasslands in the Qinghai Lake Basin

Climate, land-use changes, and nitrogen (N) deposition strongly impact plant primary productivity, particularly in alpine grassland ecosystems. In this study, the differential responses of plant community primary productivity to N and phosphorus (P) nutrient application were investigated in the natu...

Full description

Bibliographic Details
Main Authors: Chunli Li, Yonghui Li, Xinwei Li, Li Ma, Yuanming Xiao, Chunhui Zhang
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-12-01
Series:Frontiers in Plant Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fpls.2021.792123/full
Description
Summary:Climate, land-use changes, and nitrogen (N) deposition strongly impact plant primary productivity, particularly in alpine grassland ecosystems. In this study, the differential responses of plant community primary productivity to N and phosphorus (P) nutrient application were investigated in the natural (NG) and “Grain for Green” restored (RG) alpine grasslands by a continuous 3-year experiment in the Qinghai Lake Basin. N addition only significantly promoted plant aboveground biomass (AGB) by 42% and had no significant effect on belowground biomass (BGB) and total biomass (TB) in NG. In comparison with NG, N addition elevated AGB and BGB concurrently in RG by 138% and 24%, respectively, which further significantly increased TB by 41% in RG. Meanwhile, N addition significantly decreased BGB and the AGB ratio (R/S) both in NG and RG. Compared with N addition, P addition did not perform an evident effect on plant biomass parameters. Additionally, AGB was merely negatively influenced by growing season temperatures (GST) under the N addition treatment in NG. AGB was negatively associated with GST but positively related to growing season precipitation (GSP) in RG. By contrast, changes in the R/S ratio in RG were positively correlated with GST and negatively related to GSP. In sum, the results revealed that plant community biomass exhibited convergent (AGB and R/S) and divergent (BGB and TB) responses to N addition between NG and RG. In addition, the outcomes suggested that climate warming would enhance plant biomass allocation to belowground under ongoing N deposition, and indicated the significance of precipitation for plant growth and AGB accumulation in this restored alpine grassland ecosystem.
ISSN:1664-462X