Precise-Integration Time-Domain Formulation for Optical Periodic Media
A numerical formulation based on the precise-integration time-domain (PITD) method for simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the periodic boundary con...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-12-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/14/24/7896 |
_version_ | 1797502623989891072 |
---|---|
author | Joan Josep Sirvent-Verdú Jorge Francés Andrés Márquez Cristian Neipp Mariela Álvarez Daniel Puerto Sergi Gallego Inmaculada Pascual |
author_facet | Joan Josep Sirvent-Verdú Jorge Francés Andrés Márquez Cristian Neipp Mariela Álvarez Daniel Puerto Sergi Gallego Inmaculada Pascual |
author_sort | Joan Josep Sirvent-Verdú |
collection | DOAJ |
description | A numerical formulation based on the precise-integration time-domain (PITD) method for simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the periodic boundary conditions are implemented, permitting the simulation of a wide range of periodic optical media, i.e., gratings, or thin-film filters. Furthermore, the complete tensorial derivation for the permittivity also allows simulating anisotropic periodic media. Numerical results demonstrate that PITD is reliable and even considering anisotropic media can be competitive compared to traditional FDTD solutions. Furthermore, the maximum allowable time-step size has been demonstrated to be much larger than that of the CFL limit of the FDTD method, being a valuable tool in cases in which the steady-state requires a large number of time-steps. |
first_indexed | 2024-03-10T03:37:46Z |
format | Article |
id | doaj.art-0d07db1cdb2e4c5d8a3a0db90a2e8e08 |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-10T03:37:46Z |
publishDate | 2021-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-0d07db1cdb2e4c5d8a3a0db90a2e8e082023-11-23T09:24:38ZengMDPI AGMaterials1996-19442021-12-011424789610.3390/ma14247896Precise-Integration Time-Domain Formulation for Optical Periodic MediaJoan Josep Sirvent-Verdú0Jorge Francés1Andrés Márquez2Cristian Neipp3Mariela Álvarez4Daniel Puerto5Sergi Gallego6Inmaculada Pascual7Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainI.U. Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainA numerical formulation based on the precise-integration time-domain (PITD) method for simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the periodic boundary conditions are implemented, permitting the simulation of a wide range of periodic optical media, i.e., gratings, or thin-film filters. Furthermore, the complete tensorial derivation for the permittivity also allows simulating anisotropic periodic media. Numerical results demonstrate that PITD is reliable and even considering anisotropic media can be competitive compared to traditional FDTD solutions. Furthermore, the maximum allowable time-step size has been demonstrated to be much larger than that of the CFL limit of the FDTD method, being a valuable tool in cases in which the steady-state requires a large number of time-steps.https://www.mdpi.com/1996-1944/14/24/7896computational electromagneticsprecise-integration time-domain (PITD) methodperiodic mediaanisotropic mediadiffractive optics |
spellingShingle | Joan Josep Sirvent-Verdú Jorge Francés Andrés Márquez Cristian Neipp Mariela Álvarez Daniel Puerto Sergi Gallego Inmaculada Pascual Precise-Integration Time-Domain Formulation for Optical Periodic Media Materials computational electromagnetics precise-integration time-domain (PITD) method periodic media anisotropic media diffractive optics |
title | Precise-Integration Time-Domain Formulation for Optical Periodic Media |
title_full | Precise-Integration Time-Domain Formulation for Optical Periodic Media |
title_fullStr | Precise-Integration Time-Domain Formulation for Optical Periodic Media |
title_full_unstemmed | Precise-Integration Time-Domain Formulation for Optical Periodic Media |
title_short | Precise-Integration Time-Domain Formulation for Optical Periodic Media |
title_sort | precise integration time domain formulation for optical periodic media |
topic | computational electromagnetics precise-integration time-domain (PITD) method periodic media anisotropic media diffractive optics |
url | https://www.mdpi.com/1996-1944/14/24/7896 |
work_keys_str_mv | AT joanjosepsirventverdu preciseintegrationtimedomainformulationforopticalperiodicmedia AT jorgefrances preciseintegrationtimedomainformulationforopticalperiodicmedia AT andresmarquez preciseintegrationtimedomainformulationforopticalperiodicmedia AT cristianneipp preciseintegrationtimedomainformulationforopticalperiodicmedia AT marielaalvarez preciseintegrationtimedomainformulationforopticalperiodicmedia AT danielpuerto preciseintegrationtimedomainformulationforopticalperiodicmedia AT sergigallego preciseintegrationtimedomainformulationforopticalperiodicmedia AT inmaculadapascual preciseintegrationtimedomainformulationforopticalperiodicmedia |