Precise-Integration Time-Domain Formulation for Optical Periodic Media

A numerical formulation based on the precise-integration time-domain (PITD) method for simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the periodic boundary con...

Full description

Bibliographic Details
Main Authors: Joan Josep Sirvent-Verdú, Jorge Francés, Andrés Márquez, Cristian Neipp, Mariela Álvarez, Daniel Puerto, Sergi Gallego, Inmaculada Pascual
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/24/7896
_version_ 1797502623989891072
author Joan Josep Sirvent-Verdú
Jorge Francés
Andrés Márquez
Cristian Neipp
Mariela Álvarez
Daniel Puerto
Sergi Gallego
Inmaculada Pascual
author_facet Joan Josep Sirvent-Verdú
Jorge Francés
Andrés Márquez
Cristian Neipp
Mariela Álvarez
Daniel Puerto
Sergi Gallego
Inmaculada Pascual
author_sort Joan Josep Sirvent-Verdú
collection DOAJ
description A numerical formulation based on the precise-integration time-domain (PITD) method for simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the periodic boundary conditions are implemented, permitting the simulation of a wide range of periodic optical media, i.e., gratings, or thin-film filters. Furthermore, the complete tensorial derivation for the permittivity also allows simulating anisotropic periodic media. Numerical results demonstrate that PITD is reliable and even considering anisotropic media can be competitive compared to traditional FDTD solutions. Furthermore, the maximum allowable time-step size has been demonstrated to be much larger than that of the CFL limit of the FDTD method, being a valuable tool in cases in which the steady-state requires a large number of time-steps.
first_indexed 2024-03-10T03:37:46Z
format Article
id doaj.art-0d07db1cdb2e4c5d8a3a0db90a2e8e08
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-10T03:37:46Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-0d07db1cdb2e4c5d8a3a0db90a2e8e082023-11-23T09:24:38ZengMDPI AGMaterials1996-19442021-12-011424789610.3390/ma14247896Precise-Integration Time-Domain Formulation for Optical Periodic MediaJoan Josep Sirvent-Verdú0Jorge Francés1Andrés Márquez2Cristian Neipp3Mariela Álvarez4Daniel Puerto5Sergi Gallego6Inmaculada Pascual7Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainI.U. Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, P.O. Box 99, 03080 Alicante, SpainA numerical formulation based on the precise-integration time-domain (PITD) method for simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the periodic boundary conditions are implemented, permitting the simulation of a wide range of periodic optical media, i.e., gratings, or thin-film filters. Furthermore, the complete tensorial derivation for the permittivity also allows simulating anisotropic periodic media. Numerical results demonstrate that PITD is reliable and even considering anisotropic media can be competitive compared to traditional FDTD solutions. Furthermore, the maximum allowable time-step size has been demonstrated to be much larger than that of the CFL limit of the FDTD method, being a valuable tool in cases in which the steady-state requires a large number of time-steps.https://www.mdpi.com/1996-1944/14/24/7896computational electromagneticsprecise-integration time-domain (PITD) methodperiodic mediaanisotropic mediadiffractive optics
spellingShingle Joan Josep Sirvent-Verdú
Jorge Francés
Andrés Márquez
Cristian Neipp
Mariela Álvarez
Daniel Puerto
Sergi Gallego
Inmaculada Pascual
Precise-Integration Time-Domain Formulation for Optical Periodic Media
Materials
computational electromagnetics
precise-integration time-domain (PITD) method
periodic media
anisotropic media
diffractive optics
title Precise-Integration Time-Domain Formulation for Optical Periodic Media
title_full Precise-Integration Time-Domain Formulation for Optical Periodic Media
title_fullStr Precise-Integration Time-Domain Formulation for Optical Periodic Media
title_full_unstemmed Precise-Integration Time-Domain Formulation for Optical Periodic Media
title_short Precise-Integration Time-Domain Formulation for Optical Periodic Media
title_sort precise integration time domain formulation for optical periodic media
topic computational electromagnetics
precise-integration time-domain (PITD) method
periodic media
anisotropic media
diffractive optics
url https://www.mdpi.com/1996-1944/14/24/7896
work_keys_str_mv AT joanjosepsirventverdu preciseintegrationtimedomainformulationforopticalperiodicmedia
AT jorgefrances preciseintegrationtimedomainformulationforopticalperiodicmedia
AT andresmarquez preciseintegrationtimedomainformulationforopticalperiodicmedia
AT cristianneipp preciseintegrationtimedomainformulationforopticalperiodicmedia
AT marielaalvarez preciseintegrationtimedomainformulationforopticalperiodicmedia
AT danielpuerto preciseintegrationtimedomainformulationforopticalperiodicmedia
AT sergigallego preciseintegrationtimedomainformulationforopticalperiodicmedia
AT inmaculadapascual preciseintegrationtimedomainformulationforopticalperiodicmedia