Toxicity of PEG-Coated CoFe2O4 Nanoparticles with Treatment Effect of Curcumin
Abstract In this work, CoFe2O4 nanoparticles coated with polyethylene glycol (PEG) were successfully synthesized via a hydrothermal technique. Morphological studies of the samples confirmed the formation of polycrystalline pure-phase PEG-CoFe2O4 nanoparticles with sizes of about 24 nm. Toxicity indu...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-02-01
|
Series: | Nanoscale Research Letters |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s11671-018-2468-7 |
Summary: | Abstract In this work, CoFe2O4 nanoparticles coated with polyethylene glycol (PEG) were successfully synthesized via a hydrothermal technique. Morphological studies of the samples confirmed the formation of polycrystalline pure-phase PEG-CoFe2O4 nanoparticles with sizes of about 24 nm. Toxicity induced by CoFe2O4 nanoparticles was investigated, and biological assays were performed to check the toxicity effects of CoFe2O4 nanoparticles. Moreover, the healing effect of toxicity induced in living organisms was studied using curcumin and it was found that biochemical indexes detoxified and improved to reach its normal level after curcumin administration. Thus, PEG-coated CoFe2O4 synthesized through a hydrothermal method can be utilized in biomedical applications and curcumin, which is a natural chemical with no side effects, can be used for the treatment of toxicity induced by the nanoparticles in living organisms. |
---|---|
ISSN: | 1931-7573 1556-276X |