Design Process and Advanced Manufacturing of an Aquatic Surface Vehicle Hull for the Integration of a Hydrogen Power Plant Propulsion System

This article presents the design and manufacturing of a hydrogen-powered unmanned aquatic surface vehicle (USV) hull. The design process comprised three stages: (1) defining the requirements for a preliminary geometry, (2) verifying the hydrodynamic hull performance using computational fluid dynamic...

Full description

Bibliographic Details
Main Authors: Jordi Renau Martínez, Víctor García Peñas, Manuel Ibáñez Arnal, Alberto Giménez Sancho, Eduardo López González, Adelaida García Magariño, Félix Terroba Ramírez, Francisco Javier Moreno Ayerbe, Fernando Sánchez López
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/12/2/268
_version_ 1797297782268100608
author Jordi Renau Martínez
Víctor García Peñas
Manuel Ibáñez Arnal
Alberto Giménez Sancho
Eduardo López González
Adelaida García Magariño
Félix Terroba Ramírez
Francisco Javier Moreno Ayerbe
Fernando Sánchez López
author_facet Jordi Renau Martínez
Víctor García Peñas
Manuel Ibáñez Arnal
Alberto Giménez Sancho
Eduardo López González
Adelaida García Magariño
Félix Terroba Ramírez
Francisco Javier Moreno Ayerbe
Fernando Sánchez López
author_sort Jordi Renau Martínez
collection DOAJ
description This article presents the design and manufacturing of a hydrogen-powered unmanned aquatic surface vehicle (USV) hull. The design process comprised three stages: (1) defining the requirements for a preliminary geometry, (2) verifying the hydrodynamic hull performance using computational fluid dynamics (CFD) simulations, and (3) experimentally validating the hydrodynamic hull performance and CFD analysis results through experimental fluid dynamics in a calm water towing tank. The manufacturing process utilized additive manufacturing technologies, such as fused granular fabrication and selective laser sintering, to produce the hull and other components, including the propeller and the rudder; thermoplastic materials with carbon fiber reinforcement were employed. The experimental results demonstrate that the optimized trimaran hull exhibited low hydrodynamic resistance (7.5 N), high stability, and a smooth flow around the hull (up to 2 m/s). The design and manufacturing of the USV hull met expectations from both hydrodynamic and structural perspectives, and future work was outlined to integrate a power plant, navigation system, and scientific equipment.
first_indexed 2024-03-07T22:25:21Z
format Article
id doaj.art-0d0d78a661ea4684aac216057a3ced4c
institution Directory Open Access Journal
issn 2077-1312
language English
last_indexed 2024-03-07T22:25:21Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Journal of Marine Science and Engineering
spelling doaj.art-0d0d78a661ea4684aac216057a3ced4c2024-02-23T15:23:09ZengMDPI AGJournal of Marine Science and Engineering2077-13122024-02-0112226810.3390/jmse12020268Design Process and Advanced Manufacturing of an Aquatic Surface Vehicle Hull for the Integration of a Hydrogen Power Plant Propulsion SystemJordi Renau Martínez0Víctor García Peñas1Manuel Ibáñez Arnal2Alberto Giménez Sancho3Eduardo López González4Adelaida García Magariño5Félix Terroba Ramírez6Francisco Javier Moreno Ayerbe7Fernando Sánchez López8Escuela Superior de Enseñanzas Técnicas, Universidad Cardenal Herrera—CEU Universities, C/San Bartolomé 55, 46115 Alfara del Patriarca, Valencia, SpainEscuela Superior de Enseñanzas Técnicas, Universidad Cardenal Herrera—CEU Universities, C/San Bartolomé 55, 46115 Alfara del Patriarca, Valencia, SpainEscuela Superior de Enseñanzas Técnicas, Universidad Cardenal Herrera—CEU Universities, C/San Bartolomé 55, 46115 Alfara del Patriarca, Valencia, SpainEscuela Superior de Enseñanzas Técnicas, Universidad Cardenal Herrera—CEU Universities, C/San Bartolomé 55, 46115 Alfara del Patriarca, Valencia, SpainÁrea de Energía y Medio Ambiente—Laboratorio de Energía de El Arenosillo, Instituto Nacional de Técnica Aeroespacial (INTA), Ctra. Juan. Matalascañas, km34, 21130 Mazagón, Huelva, SpainInstituto Nacional de Técnica Aeroespacial “Esteban Terradas”, Subdirección General de Sistemas Navales, Ctra. de la Sierra s/n, 28048 El Pardo, Madrid, SpainInstituto Nacional de Técnica Aeroespacial “Esteban Terradas”, Subdirección General de Sistemas Navales, Ctra. de la Sierra s/n, 28048 El Pardo, Madrid, SpainInstituto Nacional de Técnica Aeroespacial “Esteban Terradas”, Subdirección General de Sistemas Navales, Ctra. de la Sierra s/n, 28048 El Pardo, Madrid, SpainEscuela Superior de Enseñanzas Técnicas, Universidad Cardenal Herrera—CEU Universities, C/San Bartolomé 55, 46115 Alfara del Patriarca, Valencia, SpainThis article presents the design and manufacturing of a hydrogen-powered unmanned aquatic surface vehicle (USV) hull. The design process comprised three stages: (1) defining the requirements for a preliminary geometry, (2) verifying the hydrodynamic hull performance using computational fluid dynamics (CFD) simulations, and (3) experimentally validating the hydrodynamic hull performance and CFD analysis results through experimental fluid dynamics in a calm water towing tank. The manufacturing process utilized additive manufacturing technologies, such as fused granular fabrication and selective laser sintering, to produce the hull and other components, including the propeller and the rudder; thermoplastic materials with carbon fiber reinforcement were employed. The experimental results demonstrate that the optimized trimaran hull exhibited low hydrodynamic resistance (7.5 N), high stability, and a smooth flow around the hull (up to 2 m/s). The design and manufacturing of the USV hull met expectations from both hydrodynamic and structural perspectives, and future work was outlined to integrate a power plant, navigation system, and scientific equipment.https://www.mdpi.com/2077-1312/12/2/268trimaran hullUSV hull design3D printing manufacturehydrogenexperimental fluid dynamics
spellingShingle Jordi Renau Martínez
Víctor García Peñas
Manuel Ibáñez Arnal
Alberto Giménez Sancho
Eduardo López González
Adelaida García Magariño
Félix Terroba Ramírez
Francisco Javier Moreno Ayerbe
Fernando Sánchez López
Design Process and Advanced Manufacturing of an Aquatic Surface Vehicle Hull for the Integration of a Hydrogen Power Plant Propulsion System
Journal of Marine Science and Engineering
trimaran hull
USV hull design
3D printing manufacture
hydrogen
experimental fluid dynamics
title Design Process and Advanced Manufacturing of an Aquatic Surface Vehicle Hull for the Integration of a Hydrogen Power Plant Propulsion System
title_full Design Process and Advanced Manufacturing of an Aquatic Surface Vehicle Hull for the Integration of a Hydrogen Power Plant Propulsion System
title_fullStr Design Process and Advanced Manufacturing of an Aquatic Surface Vehicle Hull for the Integration of a Hydrogen Power Plant Propulsion System
title_full_unstemmed Design Process and Advanced Manufacturing of an Aquatic Surface Vehicle Hull for the Integration of a Hydrogen Power Plant Propulsion System
title_short Design Process and Advanced Manufacturing of an Aquatic Surface Vehicle Hull for the Integration of a Hydrogen Power Plant Propulsion System
title_sort design process and advanced manufacturing of an aquatic surface vehicle hull for the integration of a hydrogen power plant propulsion system
topic trimaran hull
USV hull design
3D printing manufacture
hydrogen
experimental fluid dynamics
url https://www.mdpi.com/2077-1312/12/2/268
work_keys_str_mv AT jordirenaumartinez designprocessandadvancedmanufacturingofanaquaticsurfacevehiclehullfortheintegrationofahydrogenpowerplantpropulsionsystem
AT victorgarciapenas designprocessandadvancedmanufacturingofanaquaticsurfacevehiclehullfortheintegrationofahydrogenpowerplantpropulsionsystem
AT manuelibanezarnal designprocessandadvancedmanufacturingofanaquaticsurfacevehiclehullfortheintegrationofahydrogenpowerplantpropulsionsystem
AT albertogimenezsancho designprocessandadvancedmanufacturingofanaquaticsurfacevehiclehullfortheintegrationofahydrogenpowerplantpropulsionsystem
AT eduardolopezgonzalez designprocessandadvancedmanufacturingofanaquaticsurfacevehiclehullfortheintegrationofahydrogenpowerplantpropulsionsystem
AT adelaidagarciamagarino designprocessandadvancedmanufacturingofanaquaticsurfacevehiclehullfortheintegrationofahydrogenpowerplantpropulsionsystem
AT felixterrobaramirez designprocessandadvancedmanufacturingofanaquaticsurfacevehiclehullfortheintegrationofahydrogenpowerplantpropulsionsystem
AT franciscojaviermorenoayerbe designprocessandadvancedmanufacturingofanaquaticsurfacevehiclehullfortheintegrationofahydrogenpowerplantpropulsionsystem
AT fernandosanchezlopez designprocessandadvancedmanufacturingofanaquaticsurfacevehiclehullfortheintegrationofahydrogenpowerplantpropulsionsystem