Radiation Dose‐Enhancement Is a Potent Radiotherapeutic Effect of Rare‐Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma

Abstract To improve the prognosis of glioblastoma, innovative radiotherapy regimens are required to augment the effect of tolerable radiation doses while sparing surrounding tissues. In this context, nanoscintillators are emerging radiotherapeutics that down‐convert X‐rays into photons with energies...

Full description

Bibliographic Details
Main Authors: Anne‐Laure Bulin, Mans Broekgaarden, Frédéric Chaput, Victor Baisamy, Jan Garrevoet, Benoît Busser, Dennis Brueckner, Antonia Youssef, Jean‐Luc Ravanat, Christophe Dujardin, Vincent Motto‐Ros, Frédéric Lerouge, Sylvain Bohic, Lucie Sancey, Hélène Elleaume
Format: Article
Language:English
Published: Wiley 2020-10-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202001675
_version_ 1818400272099049472
author Anne‐Laure Bulin
Mans Broekgaarden
Frédéric Chaput
Victor Baisamy
Jan Garrevoet
Benoît Busser
Dennis Brueckner
Antonia Youssef
Jean‐Luc Ravanat
Christophe Dujardin
Vincent Motto‐Ros
Frédéric Lerouge
Sylvain Bohic
Lucie Sancey
Hélène Elleaume
author_facet Anne‐Laure Bulin
Mans Broekgaarden
Frédéric Chaput
Victor Baisamy
Jan Garrevoet
Benoît Busser
Dennis Brueckner
Antonia Youssef
Jean‐Luc Ravanat
Christophe Dujardin
Vincent Motto‐Ros
Frédéric Lerouge
Sylvain Bohic
Lucie Sancey
Hélène Elleaume
author_sort Anne‐Laure Bulin
collection DOAJ
description Abstract To improve the prognosis of glioblastoma, innovative radiotherapy regimens are required to augment the effect of tolerable radiation doses while sparing surrounding tissues. In this context, nanoscintillators are emerging radiotherapeutics that down‐convert X‐rays into photons with energies ranging from UV to near‐infrared. During radiotherapy, these scintillating properties amplify radiation‐induced damage by UV‐C emission or photodynamic effects. Additionally, nanoscintillators that contain high‐Z elements are likely to induce another, currently unexplored effect: radiation dose‐enhancement. This phenomenon stems from a higher photoelectric absorption of orthovoltage X‐rays by high‐Z elements compared to tissues, resulting in increased production of tissue‐damaging photo‐ and Auger electrons. In this study, Geant4 simulations reveal that rare‐earth composite LaF3:Ce nanoscintillators effectively generate photo‐ and Auger‐electrons upon orthovoltage X‐rays. 3D spatially resolved X‐ray fluorescence microtomography shows that LaF3:Ce highly concentrates in microtumors and enhances radiotherapy in an X‐ray energy‐dependent manner. In an aggressive syngeneic model of orthotopic glioblastoma, intracerebral injection of LaF3:Ce is well tolerated and achieves complete tumor remission in 15% of the subjects receiving monochromatic synchrotron radiotherapy. This study provides unequivocal evidence for radiation dose‐enhancement by nanoscintillators, eliciting a prominent radiotherapeutic effect. Altogether, nanoscintillators have invaluable properties for enhancing the focal damage of radiotherapy in glioblastoma and other radioresistant cancers.
first_indexed 2024-12-14T07:33:56Z
format Article
id doaj.art-0d109878c2e542a3b14e42c6b5bc669c
institution Directory Open Access Journal
issn 2198-3844
language English
last_indexed 2024-12-14T07:33:56Z
publishDate 2020-10-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj.art-0d109878c2e542a3b14e42c6b5bc669c2022-12-21T23:11:15ZengWileyAdvanced Science2198-38442020-10-01720n/an/a10.1002/advs.202001675Radiation Dose‐Enhancement Is a Potent Radiotherapeutic Effect of Rare‐Earth Composite Nanoscintillators in Preclinical Models of GlioblastomaAnne‐Laure Bulin0Mans Broekgaarden1Frédéric Chaput2Victor Baisamy3Jan Garrevoet4Benoît Busser5Dennis Brueckner6Antonia Youssef7Jean‐Luc Ravanat8Christophe Dujardin9Vincent Motto‐Ros10Frédéric Lerouge11Sylvain Bohic12Lucie Sancey13Hélène Elleaume14Synchrotron Radiation for Biomedical Research (STROBE) UA7 INSERM Université Grenoble Alpes Medical Beamline at the European Synchrotron Radiation Facility 71 Avenue des Martyrs Grenoble Cedex 9 38043 FranceSynchrotron Radiation for Biomedical Research (STROBE) UA7 INSERM Université Grenoble Alpes Medical Beamline at the European Synchrotron Radiation Facility 71 Avenue des Martyrs Grenoble Cedex 9 38043 FranceUniversité de Lyon École Normale Supérieure de Lyon CNRS UMR 5182 Université Claude Bernard Lyon 1 Laboratoire de Chimie Lyon F69342 FranceSynchrotron Radiation for Biomedical Research (STROBE) UA7 INSERM Université Grenoble Alpes Medical Beamline at the European Synchrotron Radiation Facility 71 Avenue des Martyrs Grenoble Cedex 9 38043 FranceDeutsches Elektronen‐Synchrotron DESY Notkestrasse 85 Hamburg DE‐22607 GermanyCancer Targets and Experimental Therapeutics Institute for Advanced Biosciences Université Grenoble Alpes INSERM U1209 CNRS UMR5309 Allée des Alpes La Tronche 38700 FranceDeutsches Elektronen‐Synchrotron DESY Notkestrasse 85 Hamburg DE‐22607 GermanySynchrotron Radiation for Biomedical Research (STROBE) UA7 INSERM Université Grenoble Alpes Medical Beamline at the European Synchrotron Radiation Facility 71 Avenue des Martyrs Grenoble Cedex 9 38043 FranceUniversité Grenoble Alpes CEA CNRS IRIG SyMMES UMR 5819 Grenoble F‐38000 FranceInstitut Lumière Matière UMR5306 Université Claude Bernard Lyon 1 CNRS Villeurbanne Cedex 69622 FranceInstitut Lumière Matière UMR5306 Université Claude Bernard Lyon 1 CNRS Villeurbanne Cedex 69622 FranceUniversité de Lyon École Normale Supérieure de Lyon CNRS UMR 5182 Université Claude Bernard Lyon 1 Laboratoire de Chimie Lyon F69342 FranceSynchrotron Radiation for Biomedical Research (STROBE) UA7 INSERM Université Grenoble Alpes Medical Beamline at the European Synchrotron Radiation Facility 71 Avenue des Martyrs Grenoble Cedex 9 38043 FranceCancer Targets and Experimental Therapeutics Institute for Advanced Biosciences Université Grenoble Alpes INSERM U1209 CNRS UMR5309 Allée des Alpes La Tronche 38700 FranceSynchrotron Radiation for Biomedical Research (STROBE) UA7 INSERM Université Grenoble Alpes Medical Beamline at the European Synchrotron Radiation Facility 71 Avenue des Martyrs Grenoble Cedex 9 38043 FranceAbstract To improve the prognosis of glioblastoma, innovative radiotherapy regimens are required to augment the effect of tolerable radiation doses while sparing surrounding tissues. In this context, nanoscintillators are emerging radiotherapeutics that down‐convert X‐rays into photons with energies ranging from UV to near‐infrared. During radiotherapy, these scintillating properties amplify radiation‐induced damage by UV‐C emission or photodynamic effects. Additionally, nanoscintillators that contain high‐Z elements are likely to induce another, currently unexplored effect: radiation dose‐enhancement. This phenomenon stems from a higher photoelectric absorption of orthovoltage X‐rays by high‐Z elements compared to tissues, resulting in increased production of tissue‐damaging photo‐ and Auger electrons. In this study, Geant4 simulations reveal that rare‐earth composite LaF3:Ce nanoscintillators effectively generate photo‐ and Auger‐electrons upon orthovoltage X‐rays. 3D spatially resolved X‐ray fluorescence microtomography shows that LaF3:Ce highly concentrates in microtumors and enhances radiotherapy in an X‐ray energy‐dependent manner. In an aggressive syngeneic model of orthotopic glioblastoma, intracerebral injection of LaF3:Ce is well tolerated and achieves complete tumor remission in 15% of the subjects receiving monochromatic synchrotron radiotherapy. This study provides unequivocal evidence for radiation dose‐enhancement by nanoscintillators, eliciting a prominent radiotherapeutic effect. Altogether, nanoscintillators have invaluable properties for enhancing the focal damage of radiotherapy in glioblastoma and other radioresistant cancers.https://doi.org/10.1002/advs.202001675glioblastomananoscintillatorsradiation dose‐enhancementsynchrotron radiationX‐ray‐induced photodynamic therapy
spellingShingle Anne‐Laure Bulin
Mans Broekgaarden
Frédéric Chaput
Victor Baisamy
Jan Garrevoet
Benoît Busser
Dennis Brueckner
Antonia Youssef
Jean‐Luc Ravanat
Christophe Dujardin
Vincent Motto‐Ros
Frédéric Lerouge
Sylvain Bohic
Lucie Sancey
Hélène Elleaume
Radiation Dose‐Enhancement Is a Potent Radiotherapeutic Effect of Rare‐Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma
Advanced Science
glioblastoma
nanoscintillators
radiation dose‐enhancement
synchrotron radiation
X‐ray‐induced photodynamic therapy
title Radiation Dose‐Enhancement Is a Potent Radiotherapeutic Effect of Rare‐Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma
title_full Radiation Dose‐Enhancement Is a Potent Radiotherapeutic Effect of Rare‐Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma
title_fullStr Radiation Dose‐Enhancement Is a Potent Radiotherapeutic Effect of Rare‐Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma
title_full_unstemmed Radiation Dose‐Enhancement Is a Potent Radiotherapeutic Effect of Rare‐Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma
title_short Radiation Dose‐Enhancement Is a Potent Radiotherapeutic Effect of Rare‐Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma
title_sort radiation dose enhancement is a potent radiotherapeutic effect of rare earth composite nanoscintillators in preclinical models of glioblastoma
topic glioblastoma
nanoscintillators
radiation dose‐enhancement
synchrotron radiation
X‐ray‐induced photodynamic therapy
url https://doi.org/10.1002/advs.202001675
work_keys_str_mv AT annelaurebulin radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma
AT mansbroekgaarden radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma
AT fredericchaput radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma
AT victorbaisamy radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma
AT jangarrevoet radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma
AT benoitbusser radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma
AT dennisbrueckner radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma
AT antoniayoussef radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma
AT jeanlucravanat radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma
AT christophedujardin radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma
AT vincentmottoros radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma
AT fredericlerouge radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma
AT sylvainbohic radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma
AT luciesancey radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma
AT heleneelleaume radiationdoseenhancementisapotentradiotherapeuticeffectofrareearthcompositenanoscintillatorsinpreclinicalmodelsofglioblastoma