Construction of Allometric Relationships to Predict Growth Parameters, Stem Biomass and Carbon of Eucalyptus grandis Growing in Sri Lanka
Enhancement of carbon storage through the establishment of man-made forests has been considered as a mitigation option to reduce increasing atmospheric CO2 levels. Therefore the present study was carried out to estimate the biomass and carbon storages of the main stem of Eucalyptus grand...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Sri Jayewardenepura
2015-12-01
|
Series: | Journal of Tropical Forestry and Environment |
Online Access: | http://journals.sjp.ac.lk/index.php/JTFE/article/view/2664 |
_version_ | 1818191716465770496 |
---|---|
author | SMCUP Subasinghe |
author_facet | SMCUP Subasinghe |
author_sort | SMCUP Subasinghe |
collection | DOAJ |
description | Enhancement of carbon storage through the establishment of man-made forests has been considered as a mitigation option to reduce increasing atmospheric CO2 levels. Therefore the present study was carried out to estimate the biomass and carbon storages of the main stem of Eucalyptus grandis using allometric relationships using the plantations of Nuwara Eliya and Badulla districts in Sri Lanka. Tree diameter and total height were measured for the samples trees and stem volume was estimated using a previously built individual model for the same species. Stem biomass was estimated using core samples and carbon was determined using Walkley-Black method. Finally the biomass values were converted separately to the carbon values. Non-liner regression analysis was employed for the construction of models which had age as the explanatory variable. Linear regression was used in order to build the models to predict the above ground and stem biomass and carbon using volume as the explanatory variable. For both linear and non-linear types, the model quality was tested using R2 and fitted line plots. According to the results, stem biomass and carbon values at the 7th year were 110.8 kg and 68.7 kg respectively. Stem biomass and carbon values at the 40th year were 1,095.8 kg and 679.4 kg respectively. Carbon content at the age 20 was 62.0% from the stem biomass. Exponential models were proven to be better than the logistic models to predict the diameter, height, stem volume, biomass and carbon with age. R2 values and the fitted line plots indicated that the selected models are of high quality. Linear models built to predict the stem biomass and carbon using stem volume also showed the high accuracy of these models which had R2 values above 97.9%. |
first_indexed | 2024-12-12T00:19:02Z |
format | Article |
id | doaj.art-0d18613b336d4aefa64933f1b632ceec |
institution | Directory Open Access Journal |
issn | 2235-9370 2235-9362 |
language | English |
last_indexed | 2024-12-12T00:19:02Z |
publishDate | 2015-12-01 |
publisher | University of Sri Jayewardenepura |
record_format | Article |
series | Journal of Tropical Forestry and Environment |
spelling | doaj.art-0d18613b336d4aefa64933f1b632ceec2022-12-22T00:44:47ZengUniversity of Sri JayewardenepuraJournal of Tropical Forestry and Environment2235-93702235-93622015-12-01522401Construction of Allometric Relationships to Predict Growth Parameters, Stem Biomass and Carbon of Eucalyptus grandis Growing in Sri LankaSMCUP Subasinghe0Department of Forestry and Environment Science University of Sri Jayewardenepura, Sri Lanka Enhancement of carbon storage through the establishment of man-made forests has been considered as a mitigation option to reduce increasing atmospheric CO2 levels. Therefore the present study was carried out to estimate the biomass and carbon storages of the main stem of Eucalyptus grandis using allometric relationships using the plantations of Nuwara Eliya and Badulla districts in Sri Lanka. Tree diameter and total height were measured for the samples trees and stem volume was estimated using a previously built individual model for the same species. Stem biomass was estimated using core samples and carbon was determined using Walkley-Black method. Finally the biomass values were converted separately to the carbon values. Non-liner regression analysis was employed for the construction of models which had age as the explanatory variable. Linear regression was used in order to build the models to predict the above ground and stem biomass and carbon using volume as the explanatory variable. For both linear and non-linear types, the model quality was tested using R2 and fitted line plots. According to the results, stem biomass and carbon values at the 7th year were 110.8 kg and 68.7 kg respectively. Stem biomass and carbon values at the 40th year were 1,095.8 kg and 679.4 kg respectively. Carbon content at the age 20 was 62.0% from the stem biomass. Exponential models were proven to be better than the logistic models to predict the diameter, height, stem volume, biomass and carbon with age. R2 values and the fitted line plots indicated that the selected models are of high quality. Linear models built to predict the stem biomass and carbon using stem volume also showed the high accuracy of these models which had R2 values above 97.9%.http://journals.sjp.ac.lk/index.php/JTFE/article/view/2664 |
spellingShingle | SMCUP Subasinghe Construction of Allometric Relationships to Predict Growth Parameters, Stem Biomass and Carbon of Eucalyptus grandis Growing in Sri Lanka Journal of Tropical Forestry and Environment |
title | Construction of Allometric Relationships to Predict Growth Parameters, Stem Biomass and Carbon of Eucalyptus grandis Growing in Sri Lanka |
title_full | Construction of Allometric Relationships to Predict Growth Parameters, Stem Biomass and Carbon of Eucalyptus grandis Growing in Sri Lanka |
title_fullStr | Construction of Allometric Relationships to Predict Growth Parameters, Stem Biomass and Carbon of Eucalyptus grandis Growing in Sri Lanka |
title_full_unstemmed | Construction of Allometric Relationships to Predict Growth Parameters, Stem Biomass and Carbon of Eucalyptus grandis Growing in Sri Lanka |
title_short | Construction of Allometric Relationships to Predict Growth Parameters, Stem Biomass and Carbon of Eucalyptus grandis Growing in Sri Lanka |
title_sort | construction of allometric relationships to predict growth parameters stem biomass and carbon of eucalyptus grandis growing in sri lanka |
url | http://journals.sjp.ac.lk/index.php/JTFE/article/view/2664 |
work_keys_str_mv | AT smcupsubasinghe constructionofallometricrelationshipstopredictgrowthparametersstembiomassandcarbonofeucalyptusgrandisgrowinginsrilanka |