Dynamical Analysis of the Covarying Coupling Constants in Scalar–Tensor Gravity

A scalar–tensor theory of gravity was considered, wherein the gravitational coupling <i>G</i> and the speed of light <i>c</i> were admitted as space–time functions and combined to form the definition of the scalar field <inline-formula><math xmlns="http://www.w3...

Full description

Bibliographic Details
Main Authors: Rodrigo R. Cuzinatto, Rajendra P. Gupta, Pedro J. Pompeia
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/3/709
_version_ 1797608813280362496
author Rodrigo R. Cuzinatto
Rajendra P. Gupta
Pedro J. Pompeia
author_facet Rodrigo R. Cuzinatto
Rajendra P. Gupta
Pedro J. Pompeia
author_sort Rodrigo R. Cuzinatto
collection DOAJ
description A scalar–tensor theory of gravity was considered, wherein the gravitational coupling <i>G</i> and the speed of light <i>c</i> were admitted as space–time functions and combined to form the definition of the scalar field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>. The varying <i>c</i> participates in the definition of the variation of the matter part of the action; it is related to the effective stress–energy tensor, which is a result of the requirement of symmetry under general coordinate transformations in our gravity model. The effect of the cosmological coupling <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Λ</mo></semantics></math></inline-formula> is accommodated within a possible behavior of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>. We analyzed the dynamics of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> in the phase space, thereby showing the existence of an attractor point for reasonable hypotheses on the potential <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>ϕ</mi><mo>)</mo></mrow></semantics></math></inline-formula> and no particular assumption on the Hubble function. The phase space analysis was performed both with the linear stability theory and via the more general Lyapunov method. Either method led to the conclusion that the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi>G</mi><mo>˙</mo></mover><mo>/</mo><mi>G</mi><mo>=</mo><mi>σ</mi><mfenced separators="" open="(" close=")"><mover accent="true"><mi>c</mi><mo>˙</mo></mover><mo>/</mo><mi>c</mi></mfenced></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>=</mo><mn>3</mn></mrow></semantics></math></inline-formula> must hold for the rest of cosmic evolution after the system arrives at the globally asymptotically stable fixed point and the dynamics of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> ceases. This result realized our main motivation: to provide a physical foundation for the phenomenological model admitting <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="" open="(" close=")"><mi>G</mi><mo>/</mo><msub><mi>G</mi><mn>0</mn></msub></mfenced><mo>=</mo><msup><mfenced separators="" open="(" close=")"><mi>c</mi><mo>/</mo><msub><mi>c</mi><mn>0</mn></msub></mfenced><mn>3</mn></msup></mrow></semantics></math></inline-formula>, used recently to interpret cosmological and astrophysical data. The thus covarying couplings <i>G</i> and <i>c</i> impact the cosmic evolution after the dynamical system settles to equilibrium. The secondary goal of our work was to investigate how this impact occurs. This was performed by constructing the generalized continuity equation in our scalar–tensor model and considering two possible regimes for the varying speed of light—decreasing <i>c</i> and increasing <i>c</i>—while solving our modified Friedmann equations. The solutions to the latter equations make room for radiation- and matter-dominated eras that progress to a dark-energy-type of accelerated expansion.
first_indexed 2024-03-11T05:49:53Z
format Article
id doaj.art-0d192631420e477fb766427648baed5e
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-11T05:49:53Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-0d192631420e477fb766427648baed5e2023-11-17T14:09:52ZengMDPI AGSymmetry2073-89942023-03-0115370910.3390/sym15030709Dynamical Analysis of the Covarying Coupling Constants in Scalar–Tensor GravityRodrigo R. Cuzinatto0Rajendra P. Gupta1Pedro J. Pompeia2Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, CanadaDepartment of Physics, University of Ottawa, Ottawa, ON K1N 6N5, CanadaDepartment of Physics, University of Ottawa, Ottawa, ON K1N 6N5, CanadaA scalar–tensor theory of gravity was considered, wherein the gravitational coupling <i>G</i> and the speed of light <i>c</i> were admitted as space–time functions and combined to form the definition of the scalar field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>. The varying <i>c</i> participates in the definition of the variation of the matter part of the action; it is related to the effective stress–energy tensor, which is a result of the requirement of symmetry under general coordinate transformations in our gravity model. The effect of the cosmological coupling <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Λ</mo></semantics></math></inline-formula> is accommodated within a possible behavior of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>. We analyzed the dynamics of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> in the phase space, thereby showing the existence of an attractor point for reasonable hypotheses on the potential <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>ϕ</mi><mo>)</mo></mrow></semantics></math></inline-formula> and no particular assumption on the Hubble function. The phase space analysis was performed both with the linear stability theory and via the more general Lyapunov method. Either method led to the conclusion that the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi>G</mi><mo>˙</mo></mover><mo>/</mo><mi>G</mi><mo>=</mo><mi>σ</mi><mfenced separators="" open="(" close=")"><mover accent="true"><mi>c</mi><mo>˙</mo></mover><mo>/</mo><mi>c</mi></mfenced></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>=</mo><mn>3</mn></mrow></semantics></math></inline-formula> must hold for the rest of cosmic evolution after the system arrives at the globally asymptotically stable fixed point and the dynamics of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> ceases. This result realized our main motivation: to provide a physical foundation for the phenomenological model admitting <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="" open="(" close=")"><mi>G</mi><mo>/</mo><msub><mi>G</mi><mn>0</mn></msub></mfenced><mo>=</mo><msup><mfenced separators="" open="(" close=")"><mi>c</mi><mo>/</mo><msub><mi>c</mi><mn>0</mn></msub></mfenced><mn>3</mn></msup></mrow></semantics></math></inline-formula>, used recently to interpret cosmological and astrophysical data. The thus covarying couplings <i>G</i> and <i>c</i> impact the cosmic evolution after the dynamical system settles to equilibrium. The secondary goal of our work was to investigate how this impact occurs. This was performed by constructing the generalized continuity equation in our scalar–tensor model and considering two possible regimes for the varying speed of light—decreasing <i>c</i> and increasing <i>c</i>—while solving our modified Friedmann equations. The solutions to the latter equations make room for radiation- and matter-dominated eras that progress to a dark-energy-type of accelerated expansion.https://www.mdpi.com/2073-8994/15/3/709dynamical analysiscovarying coupling constantsscalar–tensor theorygravitycosmology
spellingShingle Rodrigo R. Cuzinatto
Rajendra P. Gupta
Pedro J. Pompeia
Dynamical Analysis of the Covarying Coupling Constants in Scalar–Tensor Gravity
Symmetry
dynamical analysis
covarying coupling constants
scalar–tensor theory
gravity
cosmology
title Dynamical Analysis of the Covarying Coupling Constants in Scalar–Tensor Gravity
title_full Dynamical Analysis of the Covarying Coupling Constants in Scalar–Tensor Gravity
title_fullStr Dynamical Analysis of the Covarying Coupling Constants in Scalar–Tensor Gravity
title_full_unstemmed Dynamical Analysis of the Covarying Coupling Constants in Scalar–Tensor Gravity
title_short Dynamical Analysis of the Covarying Coupling Constants in Scalar–Tensor Gravity
title_sort dynamical analysis of the covarying coupling constants in scalar tensor gravity
topic dynamical analysis
covarying coupling constants
scalar–tensor theory
gravity
cosmology
url https://www.mdpi.com/2073-8994/15/3/709
work_keys_str_mv AT rodrigorcuzinatto dynamicalanalysisofthecovaryingcouplingconstantsinscalartensorgravity
AT rajendrapgupta dynamicalanalysisofthecovaryingcouplingconstantsinscalartensorgravity
AT pedrojpompeia dynamicalanalysisofthecovaryingcouplingconstantsinscalartensorgravity