Existence and multiplicity of $a$-harmonic solutions for a Steklov problem with variable exponents

Using variational methods, we prove in a different cases the existence and multiplicity of $a$-harmonic solutions for the following elleptic problem:\begin{equation*}\begin{gathered}div(a(x, \nabla u))=0, \quad \text{in }\Omega, \\a(x, \nabla u).\nu=f(x,u), \quad \text{on } \partial\Omega,\end{gathe...

Full description

Bibliographic Details
Main Authors: Abdellah Ahmed Zerouali, Belhadj Karim, Omar Chakrone
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2018-04-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/31071
_version_ 1797633393044750336
author Abdellah Ahmed Zerouali
Belhadj Karim
Omar Chakrone
author_facet Abdellah Ahmed Zerouali
Belhadj Karim
Omar Chakrone
author_sort Abdellah Ahmed Zerouali
collection DOAJ
description Using variational methods, we prove in a different cases the existence and multiplicity of $a$-harmonic solutions for the following elleptic problem:\begin{equation*}\begin{gathered}div(a(x, \nabla u))=0, \quad \text{in }\Omega, \\a(x, \nabla u).\nu=f(x,u), \quad \text{on } \partial\Omega,\end{gathered}\end{equation*} where $\Omega\subset\mathbb{R}^N(N \geq 2)$ is a bounded domain ofsmooth boundary $\partial\Omega$ and $\nu$ is the outward normalvector on $\partial\Omega$. $f: \partial\Omega\times \mathbb{R} \rightarrow \mathbb{R},$ $a: \overline{\Omega}\times \mathbb{R}^{N} \rightarrow\mathbb{R}^{N},$ are fulfilling appropriate conditions. 
first_indexed 2024-03-11T11:53:27Z
format Article
id doaj.art-0d27568b1adc410399f0e5a07d971c54
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-03-11T11:53:27Z
publishDate 2018-04-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-0d27568b1adc410399f0e5a07d971c542023-11-08T20:10:25ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882018-04-0136210.5269/bspm.v36i2.3107115440Existence and multiplicity of $a$-harmonic solutions for a Steklov problem with variable exponentsAbdellah Ahmed Zerouali0Belhadj Karim1Omar Chakrone2Centre Régional des Métiers de l’Éducation et de la Formation, FèsFaculté des Sciences et TéchniquesFaculté des Sciences OujdaUsing variational methods, we prove in a different cases the existence and multiplicity of $a$-harmonic solutions for the following elleptic problem:\begin{equation*}\begin{gathered}div(a(x, \nabla u))=0, \quad \text{in }\Omega, \\a(x, \nabla u).\nu=f(x,u), \quad \text{on } \partial\Omega,\end{gathered}\end{equation*} where $\Omega\subset\mathbb{R}^N(N \geq 2)$ is a bounded domain ofsmooth boundary $\partial\Omega$ and $\nu$ is the outward normalvector on $\partial\Omega$. $f: \partial\Omega\times \mathbb{R} \rightarrow \mathbb{R},$ $a: \overline{\Omega}\times \mathbb{R}^{N} \rightarrow\mathbb{R}^{N},$ are fulfilling appropriate conditions. https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/31071Variable exponentsElliptic problemNonlinear boundary condition$a$-harmonic solutionsRecceri's variational principlemountain pass theorem
spellingShingle Abdellah Ahmed Zerouali
Belhadj Karim
Omar Chakrone
Existence and multiplicity of $a$-harmonic solutions for a Steklov problem with variable exponents
Boletim da Sociedade Paranaense de Matemática
Variable exponents
Elliptic problem
Nonlinear boundary condition
$a$-harmonic solutions
Recceri's variational principle
mountain pass theorem
title Existence and multiplicity of $a$-harmonic solutions for a Steklov problem with variable exponents
title_full Existence and multiplicity of $a$-harmonic solutions for a Steklov problem with variable exponents
title_fullStr Existence and multiplicity of $a$-harmonic solutions for a Steklov problem with variable exponents
title_full_unstemmed Existence and multiplicity of $a$-harmonic solutions for a Steklov problem with variable exponents
title_short Existence and multiplicity of $a$-harmonic solutions for a Steklov problem with variable exponents
title_sort existence and multiplicity of a harmonic solutions for a steklov problem with variable exponents
topic Variable exponents
Elliptic problem
Nonlinear boundary condition
$a$-harmonic solutions
Recceri's variational principle
mountain pass theorem
url https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/31071
work_keys_str_mv AT abdellahahmedzerouali existenceandmultiplicityofaharmonicsolutionsforasteklovproblemwithvariableexponents
AT belhadjkarim existenceandmultiplicityofaharmonicsolutionsforasteklovproblemwithvariableexponents
AT omarchakrone existenceandmultiplicityofaharmonicsolutionsforasteklovproblemwithvariableexponents