Concentration of Bone Marrow Total Nucleated Cells by a Point-of-Care Device Provides a High Yield and Preserves Their Functional Activity
Stem and progenitor cell therapy is a novel strategy to enhance cardiovascular regeneration. Cell isolation procedures are crucial for the functional activity of the administered cellular product. Therefore, new isolation techniques have to be evaluated in comparison to the Ficoll isolation procedur...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2007-11-01
|
Series: | Cell Transplantation |
Online Access: | https://doi.org/10.3727/000000007783472363 |
_version_ | 1828420676097146880 |
---|---|
author | Patrick C. Hermann Stephan L. Huber Tanja Herrler Christoph Von Hesler Joachim Andrassy Sherwin V. Kevy May S. Jacobson Christopher Heeschen |
author_facet | Patrick C. Hermann Stephan L. Huber Tanja Herrler Christoph Von Hesler Joachim Andrassy Sherwin V. Kevy May S. Jacobson Christopher Heeschen |
author_sort | Patrick C. Hermann |
collection | DOAJ |
description | Stem and progenitor cell therapy is a novel strategy to enhance cardiovascular regeneration. Cell isolation procedures are crucial for the functional activity of the administered cellular product. Therefore, new isolation techniques have to be evaluated in comparison to the Ficoll isolation procedure as the current gold standard. Here we prospectively evaluated a novel point-of-care device (Harvest BMAC System) for the concentration of bone marrow total nucleated cells (TNC) in comparison to the Ficoll isolation procedure for bone marrow mononucleated cells (MNC). The yield in total numbers of TNC was 2.4-fold higher for Harvest compared to Ficoll. Despite significant differences in their cellular compositions, the colony-forming capacity was similar for both products. Intriguingly, the migratory capacity was significantly higher for the Harvest TNC (164 ± 66%; p = 0.007). In a mouse model of hind limb ischemia, the increase in blood flow recovery was similar between Harvest BM-TNC and Ficoll BM-MNC (0.53 ± 0.20 vs. 0.46 ± 0.15; p = 0.88). However, adjustment of the injected cell number based on the higher yield of Harvest TNC resulted in a significant better recovery (0.64 ± 0.16 vs. 0.46 ± 0.15; p = 0.003). Cells concentrated by the Harvest point-of-care device show similar or greater functional activity compared to Ficoll isolation. However, the greater yield of cells and the wider range of cell types for the Harvest device may translate into an even greater therapeutic effect. |
first_indexed | 2024-12-10T15:16:13Z |
format | Article |
id | doaj.art-0d36068365c54cedb7e2643058793a4f |
institution | Directory Open Access Journal |
issn | 0963-6897 1555-3892 |
language | English |
last_indexed | 2024-12-10T15:16:13Z |
publishDate | 2007-11-01 |
publisher | SAGE Publishing |
record_format | Article |
series | Cell Transplantation |
spelling | doaj.art-0d36068365c54cedb7e2643058793a4f2022-12-22T01:43:47ZengSAGE PublishingCell Transplantation0963-68971555-38922007-11-011610.3727/000000007783472363Concentration of Bone Marrow Total Nucleated Cells by a Point-of-Care Device Provides a High Yield and Preserves Their Functional ActivityPatrick C. Hermann0Stephan L. Huber1Tanja Herrler2Christoph Von Hesler3Joachim Andrassy4Sherwin V. Kevy5May S. Jacobson6Christopher Heeschen7Department of Surgery, Ludwig-Maximilians-University, 81377 Munich, GermanyDepartment of Surgery, Ludwig-Maximilians-University, 81377 Munich, GermanyDepartment of Surgery, Ludwig-Maximilians-University, 81377 Munich, GermanyDepartment of Surgery, Ludwig-Maximilians-University, 81377 Munich, GermanyDepartment of Surgery, Ludwig-Maximilians-University, 81377 Munich, GermanyCBR Institute for Biomedical Research, Boston, MA 02115, USACBR Institute for Biomedical Research, Boston, MA 02115, USADepartment of Surgery, Ludwig-Maximilians-University, 81377 Munich, GermanyStem and progenitor cell therapy is a novel strategy to enhance cardiovascular regeneration. Cell isolation procedures are crucial for the functional activity of the administered cellular product. Therefore, new isolation techniques have to be evaluated in comparison to the Ficoll isolation procedure as the current gold standard. Here we prospectively evaluated a novel point-of-care device (Harvest BMAC System) for the concentration of bone marrow total nucleated cells (TNC) in comparison to the Ficoll isolation procedure for bone marrow mononucleated cells (MNC). The yield in total numbers of TNC was 2.4-fold higher for Harvest compared to Ficoll. Despite significant differences in their cellular compositions, the colony-forming capacity was similar for both products. Intriguingly, the migratory capacity was significantly higher for the Harvest TNC (164 ± 66%; p = 0.007). In a mouse model of hind limb ischemia, the increase in blood flow recovery was similar between Harvest BM-TNC and Ficoll BM-MNC (0.53 ± 0.20 vs. 0.46 ± 0.15; p = 0.88). However, adjustment of the injected cell number based on the higher yield of Harvest TNC resulted in a significant better recovery (0.64 ± 0.16 vs. 0.46 ± 0.15; p = 0.003). Cells concentrated by the Harvest point-of-care device show similar or greater functional activity compared to Ficoll isolation. However, the greater yield of cells and the wider range of cell types for the Harvest device may translate into an even greater therapeutic effect.https://doi.org/10.3727/000000007783472363 |
spellingShingle | Patrick C. Hermann Stephan L. Huber Tanja Herrler Christoph Von Hesler Joachim Andrassy Sherwin V. Kevy May S. Jacobson Christopher Heeschen Concentration of Bone Marrow Total Nucleated Cells by a Point-of-Care Device Provides a High Yield and Preserves Their Functional Activity Cell Transplantation |
title | Concentration of Bone Marrow Total Nucleated Cells by a Point-of-Care Device Provides a High Yield and Preserves Their Functional Activity |
title_full | Concentration of Bone Marrow Total Nucleated Cells by a Point-of-Care Device Provides a High Yield and Preserves Their Functional Activity |
title_fullStr | Concentration of Bone Marrow Total Nucleated Cells by a Point-of-Care Device Provides a High Yield and Preserves Their Functional Activity |
title_full_unstemmed | Concentration of Bone Marrow Total Nucleated Cells by a Point-of-Care Device Provides a High Yield and Preserves Their Functional Activity |
title_short | Concentration of Bone Marrow Total Nucleated Cells by a Point-of-Care Device Provides a High Yield and Preserves Their Functional Activity |
title_sort | concentration of bone marrow total nucleated cells by a point of care device provides a high yield and preserves their functional activity |
url | https://doi.org/10.3727/000000007783472363 |
work_keys_str_mv | AT patrickchermann concentrationofbonemarrowtotalnucleatedcellsbyapointofcaredeviceprovidesahighyieldandpreservestheirfunctionalactivity AT stephanlhuber concentrationofbonemarrowtotalnucleatedcellsbyapointofcaredeviceprovidesahighyieldandpreservestheirfunctionalactivity AT tanjaherrler concentrationofbonemarrowtotalnucleatedcellsbyapointofcaredeviceprovidesahighyieldandpreservestheirfunctionalactivity AT christophvonhesler concentrationofbonemarrowtotalnucleatedcellsbyapointofcaredeviceprovidesahighyieldandpreservestheirfunctionalactivity AT joachimandrassy concentrationofbonemarrowtotalnucleatedcellsbyapointofcaredeviceprovidesahighyieldandpreservestheirfunctionalactivity AT sherwinvkevy concentrationofbonemarrowtotalnucleatedcellsbyapointofcaredeviceprovidesahighyieldandpreservestheirfunctionalactivity AT maysjacobson concentrationofbonemarrowtotalnucleatedcellsbyapointofcaredeviceprovidesahighyieldandpreservestheirfunctionalactivity AT christopherheeschen concentrationofbonemarrowtotalnucleatedcellsbyapointofcaredeviceprovidesahighyieldandpreservestheirfunctionalactivity |